SAFETY ISSUES AND LITHIUM ION TECHNOLOGY

Frank Malaspina
Jason Howard
Sathya Prasad
MOTOROLA
ENERGY SYSTEMS GROUP
Lawrenceville, Georgia 30043

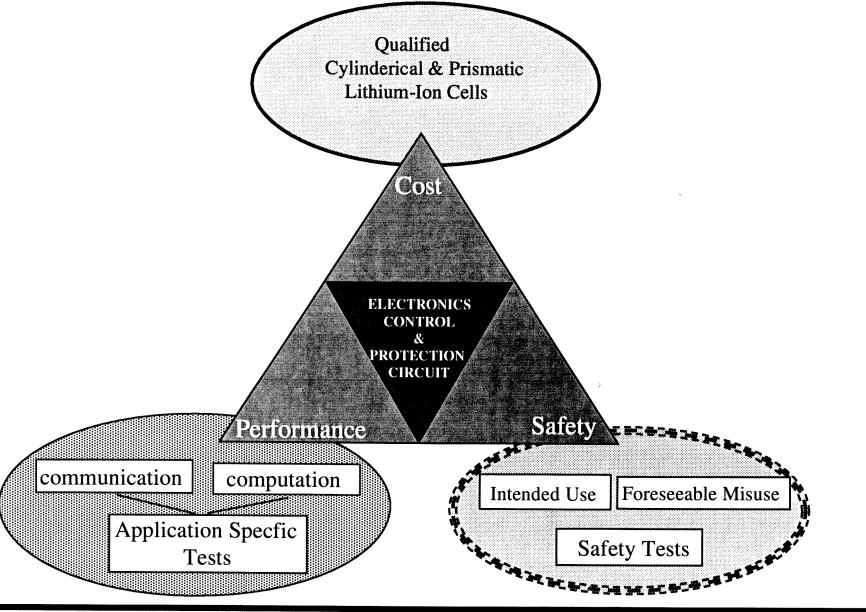
770-338-3556 fax engr98@email.mot.com

Presentation Outline

- Lithium Ion & Lithium Ion Polymer Technology Roadmap
- Current Trends in Lithium Ion Industry
- Design Guidelines Technology to Market
- Motorola's Wall-to-Host Energy System Philosophy
- Safety Issues with Lithium Ion Technology
 - Events Leading to Overheating
 - Lithium Ion Cell Overcharge Profiles
 - Thermal Runaway Efects
 - Thermal Stability vs. State of Charge
 - Overcharge Protection
 - Shutdown During Overcharge
 - Current Interrupt Device
 - * Shutdown Separator
- Safety Test Procedures
- Conclusions

Lithium Ion & Lithium Ion Polymer Technology Roadmap

E E V 0 U Li-Ion **Polymer** P E 0 Li-Ion R N **Prismatic** Y **500M** E Li-Ion Cylindrical A R 280M CELLULAR COMPUTER 1998 1999 2000 2001 2002 2003



Current Trends in Li-ion Industry

- Continued rapid growth in marketplace
 - Transition from "specialty product" to "commodity"
 - Will familiarity bring complacency with respect to safety?
- "Next generation" Li-ion technology
 - Electrode materials (cathode)
 - "Li-ion polymer"
 - Safety implications must be carefully evaluated

Design Guidelines - Technology to Market

"WALL - TO - HOST" ENERGY SYSTEM

Power Power **Battery** Host Source Supply / Charger **Pack Device** AC/DC Converter **System Space Technology Evaluation/ Safety Testing Mechanical Design Application Specific System Integration Manufacturing Technology** Power Electronics, Energy Management, Software **Needs and Attributes** of Application & Customer

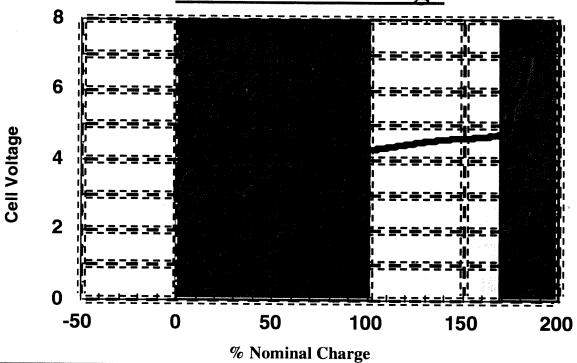
Safety Issues

- High Energy Density
- Flammable Electrolyte
- Possible presence of Li metal (abuse conditions)
- Limited thermal stability of electrode materials
- Irreversible electrolyte electrolysis

Li-ion

organic oxidized & electrolyte reduced products

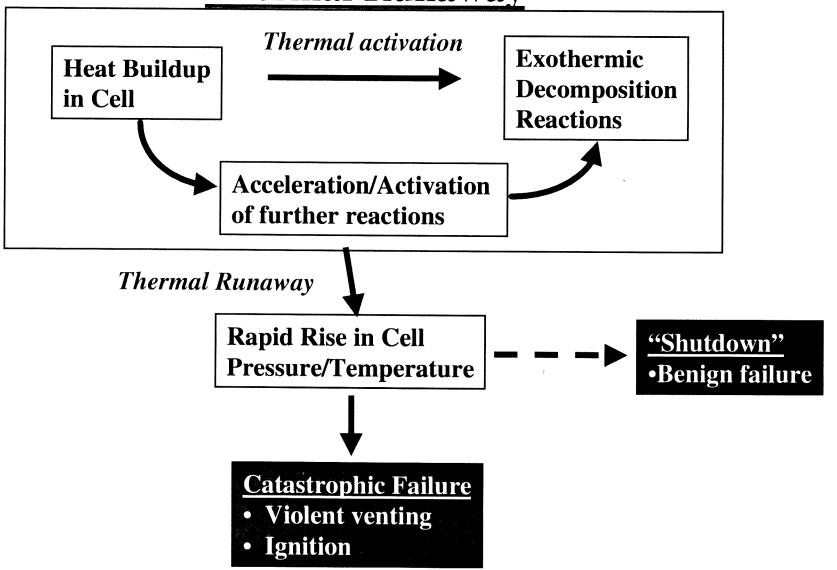
Decomposition onset - 4 to 5 V per cell IRREVERSIBLE!



Safety Issues Events Leading to Overheating

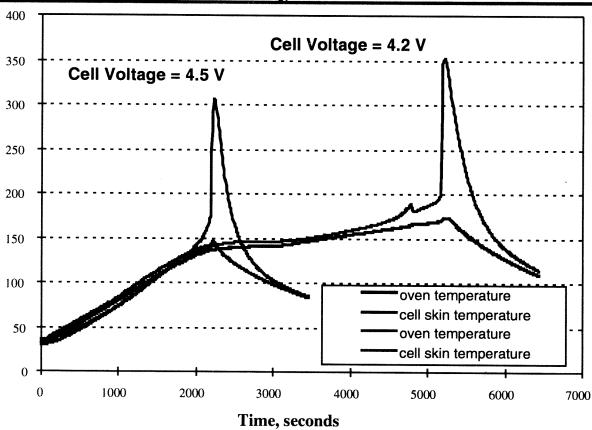
- Normal operation
 - High Currents and/or Poor Heat Exchange
 - Minimal risk in current applications
 - Scale-up to high power/large cells requires careful evaluation
- Abuse conditions
 - Severe thermal exposure
 - External short-circuit
 - Internal short-circuit
 - Manufacturing flaw
 - Mechanical abuse (crush, penetration)
 - Creates severe local heating
 - Overcharge

<u>Safety Issues</u> <u>Li-ion Overcharge</u>



- Region I: overdischarge
 - Benign failure
- Region II: normal operation

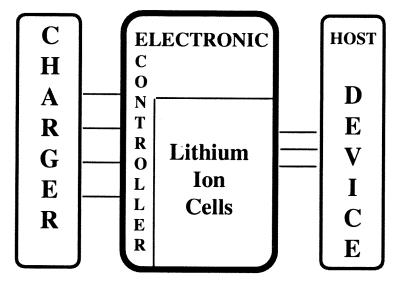
- Region III: cell degradation
 - Li plating begins
 - Electrolyte decomposition
 - Excessive delithiation of cathode
- Region IV: risk of thermal runaway
 - Complete delithiation of cathode
 - Impedance/voltage/heating increases



Safety Issues Thermal Runaway

<u>Safety Issues</u> Thermal Stability vs. State of Charge

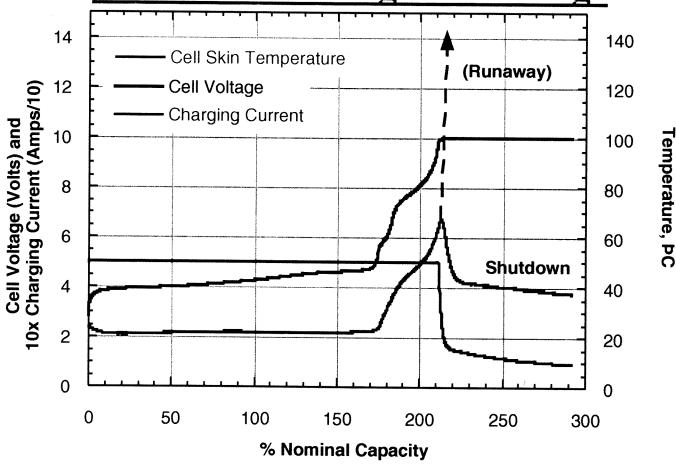
Cell Voltage = 4.2 V


- Normal charge regime
- <u>Critical cell temperature 170P C</u>

Cell Voltage = 4.5 V

- Overcharged cell
- <u>Critical cell temperature 140P C</u>

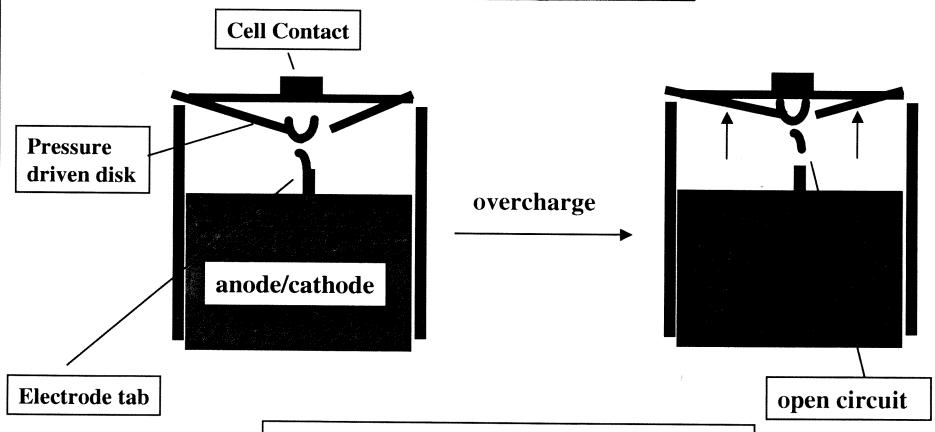
Safety Issues Overcharge Protection


- Redundant Electronic Protection
- Cell Design Parameters:
 - Electrode coating parameters
 - Cell dimensions
 - Materials ratios

- Cell level "shutdown" mechanisms
 - Round cells: current -interrupt device
 - Prismatic cells: shutdown separator

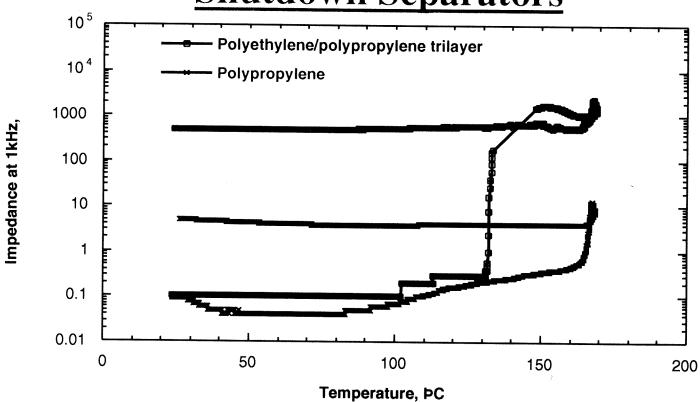
Safety Issues

Shutdown During Overcharge



Large impedance increase

Current reduced/eliminated


Safety Issues Current Interrupt Device

- Pressure build-up triggers CID.
- Gas generating additives often used.
 Li₂CO₃ ---> CO₂

<u>Safety Issues</u> <u>Shutdown Separators</u>

- Porous separator melts blocking ionic conduction
- Impedance increases 100x to 10,000x
- Current limited to small value

** Safety Test Procedures 1

IEC tests	UL tests	Test Parameters	Remarks
Requires no fire, explosion			
Overcharge	Abusive overcharge	Charge at 2I ₀ to 6 V; insulated	Based on EPD benchmarking
High rate charge	Abnormal charge	Charge at 3I ₀ to Vref; 100% charge; insulated	modified IEC
Forced discharge	Forced discharge	Discharge at I_0 to -10 V; 12.5 hours, insulated	modified IEC
Short circuit	Short circuit	1) ambient 2) 60°C	same as UL/IEC
Thermal exposure	Heating	ramp to 150°C at 5 C/min; 150°C for 1 hour	modified UL
Requires no fire, explosion, leak, or vent			Ĩ
Continuous charge		Charge at I_0 to V_{ref} . Maintain V_{ref} for 28 days	modified IEC

** Safety Test Procedures 2

IEC tests	UL tests	Test Parameters	Remarks
Requires no fire, explosion		·	
		1/8" nail; ambient	omitted from UL and IEC
Drop	Drop	3 times per plane from 1 m to concrete	IEC/UL combination
Flat plate crush	Flat plate crush	see UL2054	IEC/UL
Impact	Impact	see UL2054	IEC/UL
Requires no fire, explosion, leak, or vent			
Shock	Shock	see UL2054	IEC/UL
Vibration	Vibration	see UL2054	IEC/UL
High temp. storage and thermal shock	Mold stress relief	75IC/48h; 5 min 20°C/6h 5 min 20°C/24h	combined IEC and UL tests into single test; single set
	Temperature cycling	70°C/4h; 20°C/2h; -40°C/4h; 20°C/2h; 10 complete cycles store for 10 days	of samples
Altitude simulation		Vacuum chamber to \$3 torr (50,000 ft) 1) ambient 2) 60°C	modified IEC

Conclusions

- Li-ion technology can be used safely in portable electronic devices only with electronic control & protection circuitry.
- Safety implications of new developments should be monitored carefully.

"Li-ion Polymer"

- Chemistry very similar to Li-ion
 - Carbon anode/metal oxide cathode
 - Packaging: soft polymer laminate vs. steel can
- Polymer"Gel" Electrolyte
 - Electrode/electrolyte "glued" together
 - Polymer blended with liquid solvent plasticizer
 - Typically same solvents used in conventional Li-ion
 - Flammable material
- Safety
 - Similar chemistry
 Similar safety issues
 - Expect safety to be comparable to existing Li-ion

New Cathode Materials

Material	Reversible Specific Capacity, mAh/g	Thermal Decomposition Limit of Charged Material, °C
LiMn ₂ O ₄	80-110	- 360
LiCoO ₂	130-150	- 220
LiNi _x M _y O ₂ *	150-210	170-220

^{*}M=Co, Al, etc. Doping levels vary from 0 to 20%.

Co	Mn	Ni and NiCo
"standard" material	low capacity	highest capacity
moderate thermal stability	high thermal stability	low thermal stability?
good cycle-life	low cycle-life?	good cycle-life?