4.2.2. The Power MOSFET

- Gate lengths approaching one micron
- Consists of many small enhancementmode parallelconnected MOSFET cells, covering the surface of the silicon wafer
- Vertical current flow
- n-channel device is shown

MOSFET: Off state

- $p-n^{-}$junction is reverse-biased
- off-state voltage appears across n^{-} region
depletion region

MOSFET: on state

source

- $p-n^{-}$junction is slightly reversebiased
- positive gate voltage induces conducting channel
- drain current flows through n^{-}region and conducting channel
- on resistance = total resistances of $n-$ region, conducting channel, source and drain contacts, etc.

MOSFET body diode

- $p-n^{-}$junction forms an effective diode, in parallel with the channel
- negative drain-tosource voltage can forward-bias the body diode
- diode can conduct the full MOSFET rated current
- diode switching speed not optimized —body diode is slow, Q_{r} is large

Chapter 4: Switch realization

Typical MOSFET characteristics

- Off state: $V_{G S}<V_{t h}$
- On state: $V_{G S} \gg V_{t h}$
- MOSFET can conduct peak currents well in excess of average current rating characteristics are unchanged
- on-resistance has positive temperature coefficient, hence easy to parallel

A simple MOSFET equivalent circuit

$$
C_{d s}\left(v_{d s}\right)=\frac{C_{0}}{\sqrt{1+\frac{v_{d s}}{V_{0}}}}
$$

- $C_{g s}$: large, essentially constant
- $C_{g d}$: small, highly nonlinear
- $C_{d s}$: intermediate in value, highly nonlinear
- switching times determined by rate at which gate driver charges/ discharges $C_{g s}$ and $C_{g d}$
$C_{d s}\left(v_{d s}\right) \approx C_{0} \sqrt{\frac{V_{0}}{v_{d s}}}=\frac{C_{0}^{\prime}}{\sqrt{v_{d s}}}$

Characteristics of several commercial power MOSFETs

Part number	Ratedmax voltage	Rated avg current	$R_{\text {on }}$	Q_{g} (typical)
IRFZ48	60 V	50 A	0.018Ω	110 nC
IRF510	100 V	5.6 A	0.54Ω	8.3 nC
IRF540	100 V	28 A	0.077Ω	72 nC
APT10M25BNR	100 V	75 A	0.025Ω	171 nC
IRF740	400 V	10 A	0.55Ω	63 nC
MTM15N40E	400 V	15 A	0.3Ω	110 nC
APT5025BN	500 V	23 A	0.25Ω	83 nC
APT1001RBNR	1000 V	11 A	1.0Ω	150 nC

MOSFET: conclusions

- A majority-carrier device: fast switching speed
- Typical switching frequencies: tens and hundreds of kHz
- On-resistance increases rapidly with rated blocking voltage
- Easy to drive
- The device of choice for blocking voltages less than 500V
- 1000 V devices are available, but are useful only at low power levels (100W)
- Part number is selected on the basis of on-resistance rather than current rating

