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This article gives an overview of the ARM 7 architecture and a description of its 
major features for a developer new to the device.   Future articles will examine other 
aspects of the ARM architecture. 
 
Basic Characteristics 
 
The principle feature of the ARM 7 microcontroller is that it is a register based load-
and-store architecture with a number of operating modes. While the ARM7 is a 32 bit 
microcontroller, it is also capable of running a 16-bit instruction set, known as 
“THUMB”.  This helps it achieve a greater code density and enhanced power saving.  
While all of the register-to-register data processing instructions are single-cycle, other 
instructions such as data transfer instructions, are multi-cycle.  To increase the 
performance of these instructions, the ARM 7 has a three-stage pipeline. Due to the 
inherent simplicity of the design and low gate count, ARM 7 is the industry leader in 
low-power processing on a watts per MIP basis.  Finally, to assist the developer, the 
ARM core has a built-in JTAG debug port and on-chip “embedded ICE” that allows 
programs to be downloaded and fully debugged in-system. 
 
In order to keep the ARM 7 both simple and cost-effective, the code and data regions 
are accessed via a single data bus. Thus while the ARM 7 is capable of single-cycle 
execution of all data processing instructions, data transfer instructions may take 
several cycles since they will require at least two accesses onto the bus (one for the 
instruction one for the data). In order to improve performance, a three stage pipeline is 
used that allows multiple instructions to be processed simultaneously.  
 
The pipeline has three stages; FETCH, DECODE and EXECUTE. The hardware of 
each stage is designed to be independent so up to three instructions can be processed 
simultaneously. The pipeline is most effective in speeding up sequential code. 
However a branch instruction will cause the pipeline to be flushed marring its 
performance. As we shall see later the ARM 7 designers had some clever ideas to 
solve this problem. 
 

 
 
Fig 1 ARM 3-Stage Pipeline 
 



ARM7 Programming Model 
 
The programmer’s model of the ARM 7 consists of 15 user registers, as shown in Fig. 
3, with R15 being used as the Program Counter (PC). Since the ARM 7 is a load-and-
store architecture, an user program must load data from memory into the CPU 
registers, process this data and then store the result back into memory. Unlike other 
processors no memory to memory instructions are available. 
 

 
 
Fig 2 Load And Store Architecture 
 
As stated above R15 is the Program Counter. R13 and R14 also have special 
functions; R13 is used as the stack pointer, though this has only been defined as a 
programming convention.  Unusually the ARM instruction set does not have PUSH 
and POP instructions so stack handling is done via a set of instructions that allow 
loading and storing of multiple registers in a single operation.  Thus it is possible to 
PUSH or POP the entire register set onto the stack in a single instruction.  R14 has 
special significance and is called the “link register”. When a call is made to a 
procedure, the return address is automatically placed into R14, rather than onto a 
stack, as might be expected.  A return can then be implemented by moving the 
contents of R14 into R15, the PC. For multiple calling trees, the contents of R14 (the 
link register) must be placed onto the stack. 
 

 
 
Fig 3 User Mode Register Model 
 



In addition to the 16 CPU registers, there is a current program status register (CPSR). 
This contains a set of condition code flags in the upper four bits that record the result 
of a previous instruction, as shown in Fig 4. In addition to the condition code flags, 
the CPSR contains a number of user-configurable bits that can be used to change the 
processor mode, enter Thumb processing and enable/disable interrupts. 
 

 
Fig 4  Current Program Status Register and Flags 
 
Exception And Interrupt Modes 
 
The ARM 7 architecture has a total of six different operating modes, as shown below. 
These modes are protected or exception modes which have associated interrupt 
sources and their own register sets. 
 
User: This mode is used to run the application code. Once in user mode the CPSR 
cannot be written to and modes can only be changed when an exception is generated. 
 
FIQ: (Fast Interrupt reQuest) This supports high speed interrupt handling. Generally 
it is used for a single critical interrupt source in a system 
  
IRQ: (Interrupt ReQuest)  This supports all other interrupt sources in a system 
 
Supervisor: A “protected” mode for running system level code to access hardware or 
run OS calls. The ARM 7 enters this mode after reset. 
 
Abort: If an instruction or data is fetched from an invalid memory region, an abort 
exception will be generated  
 
Undefined Instruction: If a FETCHED opcode is not an ARM instruction, an 
undefined instruction exception will be generated.  
 
The User registers R0-R7 are common to all operating modes. However FIQ mode 
has its own R8 –R14 that replace the user registers when FIQ is entered. Similarly, 
each of the other modes have their own R13 and R14  so that each operating mode has 
its own unique Stack pointer and Link register. The CPSR is also common to all 
modes. However in each of the exception modes, an additional register - the saved 
program status register (SPSR), is added. When the processor changes the current 
value of the CPSR stored in the SPSR, this can be restored on exiting the exception 
mode. 
 



 
 
Fig 5 Full Register Set For ARM 7 
 
Entry to the Exception modes is through the interrupt vector table. Exceptions in the 
ARM processor can be split into three distinct types.  
 
(i) Exceptions caused by executing an instruction, these include software interrupts, 
undefined instruction exceptions and memory abort exceptions 
 
(ii) Exceptions caused as a side effect of an instruction such as a abort caused by 
trying to fetch data from an invalid memory region. 
 
(iii) Exceptions unrelated to instruction execution, this includes reset, FIQ and IRQ 
interrupts. 
 
In each case entry into the exception mode uses the same mechanism. On generation 
of the exception, the processor switches to the privileged mode, the current value of 
the PC+4 is saved into the Link register (R14) of the privileged mode and the current 
value of CPSR is saved into the privileged mode’s SPSR.  The IRQ interrupts are also 
disabled and if the FIQ mode is entered, the FIQ interrupts are also disabled  Finally 
the Program Counter is forced to the exception vector address and processing of the 
exception can start. Usually the first action of the exception routine will be to push 
some or all of the user registers onto the stack. 
 

 
 
Fig 6 ARM 7 Vector Table 



A couple of things are worth noting on the vector table. Firstly, there is a missing 
vector at 0x000000014. This was used on an earlier ARM architecture and is left 
empty on ARM 7 to allow backward compatibility. Secondly, the FIQ interrupt is at 
the highest address so the FIQ routines could start from this address, removing the 
need for a jump instruction to reach the routine.  It helps make entry into the FIQ 
routine as fast as possible. 
 
Once processing of the exception has finished, the processor can leave the privileged 
mode and return to the user mode.  Firstly the contents of any registers previously 
saved onto the stack must be restored. Next the CSPR must be restored from the 
SPSR and finally the Program Counter is restored by moving the contents of the link 
register to R15, (i.e. the Program Counter). The interrupted program flow can then 
restart. 
 
Data Types 
 
The ARM instruction set supports six data types namely 8 bit signed and unsigned, 16 
bit signed and unsigned plus 32 bit signed and unsigned. The ARM processor 
instruction set has been designed to support these data types in Little or Big-endian 
formats. However most ARM silicon implementations use the Little-endian format.  
 
ARM instructions typically have a three-operand format, as shown below 
 
ADD R1, R2, R3 ; R1 = R2+R3 
 
 
ARM7 Program Flow Control 
 
In all processors there is a small group of instructions that are conditionally executed 
depending on a group of processor flags.  These are branch instructions such as 
branch not equal. Within the ARM instruction set, all instructions are conditionally 
executable.  
 

 
 
Fig. 7 Instruction Condition Code Bits 
 
The top four bits of each instruction contain a condition code that must be satisfied if 
the instruction is to be executed. This goes a long way to eliminating small branches 
in the program code and eliminating stalls in the pipeline so increasing the overall 
program performance. Thus for small conditional branches of three instructions or 
less,  conditional execution of instructions should be used.  For larger jumps, normal 
branching instructions should be used. 
 



 
 
Fig. 8 Instruction Condition Codes 
 
Thus our ADD instruction below could be prefixed with a condition code, as shown.  
This adds no overhead to instruction execution 
 
EQADD R1, R2,R3  ; If ( Zero flag = 1) then R1 = R2+R3 
 
The ARM7 processor also has a 32-bit barrel shifter that allows it to shift or rotate one 
of the operands in a data processing instruction. This takes place in the same cycle as 
the instruction.  The ADD instruction could be expanded as follows 
 
EQADD R1,R2 R3, LSL #2 ; If ( Zero flag = 1) then R1 = R2+(R3 x 4) 
 
Finally the programmer may decide if a particular instruction can set the condition 
code flags in the CPSR. 
 
 
EQADDS R1,R2 R3, LSL #2 ; If ( Zero flag = 1) then R1 = R2+(R3 x 

4) and set condition code flags 
 
In the ARM instruction set there are no dedicated call or return instructions. Instead 
these functions are created out of a small group of  branching instructions. 
 
The standard branch (B) instruction allows a jump of around +- 32Mb. A conditional 
branch can be formed by use of the condition codes.  For example, a “branch not 
equal” would be the branching instruction B and the condition code “NE” for not 
equal giving “BNE”. The next form of the branch instruction is the branch with link. 
This is the branch instruction but the current value of the PC +4 is saved into R14, the 
link register. This acts as a CALL instruction by saving the return address into R14. A 
return instruction is not necessary since a return can be implemented by moving R14 
into the PC. The return is more complicated in the case of an interrupt routine. 
Depending on the type of exception, it may be necessary to modify the contents of the 
link register to get the correct return address. For example, in the case of an IRQ or 
FIQ interrupt, the processor will finish its current instruction, increment the PC to the 
next instruction and then jumping to the vector table. This means that the value in the 
link register is PC+4 or one instruction ahead of the return address. This means we 



need to subtract 4 from the value in the link register to get the correct return address. 
This can be done in a single instruction thus: 
 
SUBS pc, r14, #4 // PC = Link register – 4 
 
 

 
 
Fig 9 Branch and Branch Link Instruction Operation  
 
Branching instructions are also used to enter the 16-bit Thumb instruction set. Both 
the branch and branch-with-link may perform an exchange between 32-bit and 16-bit 
instruction sets and vice versa. 
 
The Branch exchange will jump to a location and start to execute 16-bit Thumb 
instructions. Branch link exchange will jump to a location, save PC+4 into the link 
register and start execution of 16-bit Thumb instructions.  In both cases, the T bit is 
set in the CPSR. An equivalent instruction is implemented in the Thumb instruction 
set to return to 32-bit ARM instruction processing. 
 

 
 
Fig. 10 Branch Exchange and Branch Link Exchange Instruction Operation 
 
Software Interrupts 
 



The ARM instruction set has a software interrupt instruction. Execution of this 
instruction forces an exception as described above; the processor will enter supervisor 
mode and jump to the SWI vector at 0x00000008.  
 

 
 
Fig. 11 Software Interrupt Instruction 
 
The bit field 0-23 of the SWI instruction is empty and can be used to hold an ordinal. 
On execution of an SWI instruction, this ordinal can be examined to determine which 
SWI procedure to run and gives over 16 million possible SWI functions. 
 
… 
Swi, #1 ; call swi function one 
… 
 
In the swi handler 
 
register unsigned * link_ptr asm ("r14");    // define a pointer to the link register 
 
Switch ((*(link_ptr-1)) & 0x00FFFFFF)   //calculate the number of the swi function  
{ 
Case 0x01 :  SWI_Function1();   //Call the function 
…. 
} 
 
This can be used to provide a hardware abstraction layer. In order to access OS calls 
or SFR registers, the user code must make a SWI call. All these functions are then 
running in a supervisor mode, with a separate stack and link register. 
 
As well as instructions to transfer data to and from memory and to CPU registers, the 
ARM 7 has instructions to save and load multiple registers.  It is possible to load or 
save all 16 CPU registers or a selection of registers in a single instruction. Needless to 
say, this is extremely useful when entering or exiting a procedure. 
 

 
 
Fig. 12 Load and Store Multiple Instruction Operation 
 
The CPSR and SPSR are only accessed by two special instructions to move their 
contents to and from a CPU register.  No other instruction can act on them directly.  
 



 
 
Fig. 13 Programming The SPSR And CPSR Registers 
 
THUMB Support 
 
The ARM processor is capable of executing both 32-bit (ARM) instructions and 16-
Bit (Thumb instructions). The Thumb instruction set must always be entered by 
running a Branch exchange or branch link exchange instruction and NOT by setting 
the T bit in the CPSR. Thumb instructions are essentially a mapping of their 32 bit 
cousins but unlike the ARM instructions, they are unconditionally executed except 
though for branch instructions. 
 

 
 
Fig. 14 Thumb Instruction Processing 
 
Thumb instructions only have unlimited access to registers R0-R7 and R13 – R15. A 
reduced number of instructions can access the full register set.  
 

 
 
Fig.15 Thumb programmers model 
 



The Thumb instruction set has the same load and store multiple instructions as ARM 
and in addition, has a modified version of these instructions in the form of PUSH and 
POP that implement a full descending stack in the conventional manner. The Thumb 
instruction set also supports the SWI instruction, except that the ordinal field is only 8 
bits long to support 256 different SWI calls. When the processor is executing Thumb 
code and an exception occurs, it will switch to ARM mode in order to process the 
exception.  When the CPSR is restored the, Thumb bit will be reset and the processor 
continues to run Thumb instructions 
 

 
 
Fig.16 Thumb Exception Processing 
 
Thumb has a much higher code density than ARM code, needing some 70% of the 
space of the latter. However in a 32-bit memory, ARM code is some 40% faster than 
Thumb. However it should be noted that if you only have 16-bit wide memory then 
Thumb code will be faster than ARM code by about 45%. Finally the other important 
aspect of Thumb is that it can use up to 30% less power than ARM code. 
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