

An Introduction to the ARM 7 Architecture

Trevor Martin CEng, MIEE
Technical Director

This article gives an overview of the ARM 7 architecture and a description of its
major features for a developer new to the device. Future articles will examine other
aspects of the ARM architecture.

Basic Characteristics

The principle feature of the ARM 7 microcontroller is that it is a register based load-
and-store architecture with a number of operating modes. While the ARM7 is a 32 bit
microcontroller, it is also capable of running a 16-bit instruction set, known as
“THUMB”. This helps it achieve a greater code density and enhanced power saving.
While all of the register-to-register data processing instructions are single-cycle, other
instructions such as data transfer instructions, are multi-cycle. To increase the
performance of these instructions, the ARM 7 has a three-stage pipeline. Due to the
inherent simplicity of the design and low gate count, ARM 7 is the industry leader in
low-power processing on a watts per MIP basis. Finally, to assist the developer, the
ARM core has a built-in JTAG debug port and on-chip “embedded ICE” that allows
programs to be downloaded and fully debugged in-system.

In order to keep the ARM 7 both simple and cost-effective, the code and data regions
are accessed via a single data bus. Thus while the ARM 7 is capable of single-cycle
execution of all data processing instructions, data transfer instructions may take
several cycles since they will require at least two accesses onto the bus (one for the
instruction one for the data). In order to improve performance, a three stage pipeline is
used that allows multiple instructions to be processed simultaneously.

The pipeline has three stages; FETCH, DECODE and EXECUTE. The hardware of
each stage is designed to be independent so up to three instructions can be processed
simultaneously. The pipeline is most effective in speeding up sequential code.
However a branch instruction will cause the pipeline to be flushed marring its
performance. As we shall see later the ARM 7 designers had some clever ideas to
solve this problem.

Fig 1 ARM 3-Stage Pipeline

ARM7 Programming Model

The programmer’s model of the ARM 7 consists of 15 user registers, as shown in Fig.
3, with R15 being used as the Program Counter (PC). Since the ARM 7 is a load-and-
store architecture, an user program must load data from memory into the CPU
registers, process this data and then store the result back into memory. Unlike other
processors no memory to memory instructions are available.

Fig 2 Load And Store Architecture

As stated above R15 is the Program Counter. R13 and R14 also have special
functions; R13 is used as the stack pointer, though this has only been defined as a
programming convention. Unusually the ARM instruction set does not have PUSH
and POP instructions so stack handling is done via a set of instructions that allow
loading and storing of multiple registers in a single operation. Thus it is possible to
PUSH or POP the entire register set onto the stack in a single instruction. R14 has
special significance and is called the “link register”. When a call is made to a
procedure, the return address is automatically placed into R14, rather than onto a
stack, as might be expected. A return can then be implemented by moving the
contents of R14 into R15, the PC. For multiple calling trees, the contents of R14 (the
link register) must be placed onto the stack.

Fig 3 User Mode Register Model

In addition to the 16 CPU registers, there is a current program status register (CPSR).
This contains a set of condition code flags in the upper four bits that record the result
of a previous instruction, as shown in Fig 4. In addition to the condition code flags,
the CPSR contains a number of user-configurable bits that can be used to change the
processor mode, enter Thumb processing and enable/disable interrupts.

Fig 4 Current Program Status Register and Flags

Exception And Interrupt Modes

The ARM 7 architecture has a total of six different operating modes, as shown below.
These modes are protected or exception modes which have associated interrupt
sources and their own register sets.

User: This mode is used to run the application code. Once in user mode the CPSR
cannot be written to and modes can only be changed when an exception is generated.

FIQ: (Fast Interrupt reQuest) This supports high speed interrupt handling. Generally
it is used for a single critical interrupt source in a system

IRQ: (Interrupt ReQuest) This supports all other interrupt sources in a system

Supervisor: A “protected” mode for running system level code to access hardware or
run OS calls. The ARM 7 enters this mode after reset.

Abort: If an instruction or data is fetched from an invalid memory region, an abort
exception will be generated

Undefined Instruction: If a FETCHED opcode is not an ARM instruction, an
undefined instruction exception will be generated.

The User registers R0-R7 are common to all operating modes. However FIQ mode
has its own R8 –R14 that replace the user registers when FIQ is entered. Similarly,
each of the other modes have their own R13 and R14 so that each operating mode has
its own unique Stack pointer and Link register. The CPSR is also common to all
modes. However in each of the exception modes, an additional register - the saved
program status register (SPSR), is added. When the processor changes the current
value of the CPSR stored in the SPSR, this can be restored on exiting the exception
mode.

Fig 5 Full Register Set For ARM 7

Entry to the Exception modes is through the interrupt vector table. Exceptions in the
ARM processor can be split into three distinct types.

(i) Exceptions caused by executing an instruction, these include software interrupts,
undefined instruction exceptions and memory abort exceptions

(ii) Exceptions caused as a side effect of an instruction such as a abort caused by
trying to fetch data from an invalid memory region.

(iii) Exceptions unrelated to instruction execution, this includes reset, FIQ and IRQ
interrupts.

In each case entry into the exception mode uses the same mechanism. On generation
of the exception, the processor switches to the privileged mode, the current value of
the PC+4 is saved into the Link register (R14) of the privileged mode and the current
value of CPSR is saved into the privileged mode’s SPSR. The IRQ interrupts are also
disabled and if the FIQ mode is entered, the FIQ interrupts are also disabled Finally
the Program Counter is forced to the exception vector address and processing of the
exception can start. Usually the first action of the exception routine will be to push
some or all of the user registers onto the stack.

Fig 6 ARM 7 Vector Table

A couple of things are worth noting on the vector table. Firstly, there is a missing
vector at 0x000000014. This was used on an earlier ARM architecture and is left
empty on ARM 7 to allow backward compatibility. Secondly, the FIQ interrupt is at
the highest address so the FIQ routines could start from this address, removing the
need for a jump instruction to reach the routine. It helps make entry into the FIQ
routine as fast as possible.

Once processing of the exception has finished, the processor can leave the privileged
mode and return to the user mode. Firstly the contents of any registers previously
saved onto the stack must be restored. Next the CSPR must be restored from the
SPSR and finally the Program Counter is restored by moving the contents of the link
register to R15, (i.e. the Program Counter). The interrupted program flow can then
restart.

Data Types

The ARM instruction set supports six data types namely 8 bit signed and unsigned, 16
bit signed and unsigned plus 32 bit signed and unsigned. The ARM processor
instruction set has been designed to support these data types in Little or Big-endian
formats. However most ARM silicon implementations use the Little-endian format.

ARM instructions typically have a three-operand format, as shown below

ADD R1, R2, R3 ; R1 = R2+R3

ARM7 Program Flow Control

In all processors there is a small group of instructions that are conditionally executed
depending on a group of processor flags. These are branch instructions such as
branch not equal. Within the ARM instruction set, all instructions are conditionally
executable.

Fig. 7 Instruction Condition Code Bits

The top four bits of each instruction contain a condition code that must be satisfied if
the instruction is to be executed. This goes a long way to eliminating small branches
in the program code and eliminating stalls in the pipeline so increasing the overall
program performance. Thus for small conditional branches of three instructions or
less, conditional execution of instructions should be used. For larger jumps, normal
branching instructions should be used.

Fig. 8 Instruction Condition Codes

Thus our ADD instruction below could be prefixed with a condition code, as shown.
This adds no overhead to instruction execution

EQADD R1, R2,R3 ; If (Zero flag = 1) then R1 = R2+R3

The ARM7 processor also has a 32-bit barrel shifter that allows it to shift or rotate one
of the operands in a data processing instruction. This takes place in the same cycle as
the instruction. The ADD instruction could be expanded as follows

EQADD R1,R2 R3, LSL #2 ; If (Zero flag = 1) then R1 = R2+(R3 x 4)

Finally the programmer may decide if a particular instruction can set the condition
code flags in the CPSR.

EQADDS R1,R2 R3, LSL #2 ; If (Zero flag = 1) then R1 = R2+(R3 x

4) and set condition code flags

In the ARM instruction set there are no dedicated call or return instructions. Instead
these functions are created out of a small group of branching instructions.

The standard branch (B) instruction allows a jump of around +- 32Mb. A conditional
branch can be formed by use of the condition codes. For example, a “branch not
equal” would be the branching instruction B and the condition code “NE” for not
equal giving “BNE”. The next form of the branch instruction is the branch with link.
This is the branch instruction but the current value of the PC +4 is saved into R14, the
link register. This acts as a CALL instruction by saving the return address into R14. A
return instruction is not necessary since a return can be implemented by moving R14
into the PC. The return is more complicated in the case of an interrupt routine.
Depending on the type of exception, it may be necessary to modify the contents of the
link register to get the correct return address. For example, in the case of an IRQ or
FIQ interrupt, the processor will finish its current instruction, increment the PC to the
next instruction and then jumping to the vector table. This means that the value in the
link register is PC+4 or one instruction ahead of the return address. This means we

need to subtract 4 from the value in the link register to get the correct return address.
This can be done in a single instruction thus:

SUBS pc, r14, #4 // PC = Link register – 4

Fig 9 Branch and Branch Link Instruction Operation

Branching instructions are also used to enter the 16-bit Thumb instruction set. Both
the branch and branch-with-link may perform an exchange between 32-bit and 16-bit
instruction sets and vice versa.

The Branch exchange will jump to a location and start to execute 16-bit Thumb
instructions. Branch link exchange will jump to a location, save PC+4 into the link
register and start execution of 16-bit Thumb instructions. In both cases, the T bit is
set in the CPSR. An equivalent instruction is implemented in the Thumb instruction
set to return to 32-bit ARM instruction processing.

Fig. 10 Branch Exchange and Branch Link Exchange Instruction Operation

Software Interrupts

The ARM instruction set has a software interrupt instruction. Execution of this
instruction forces an exception as described above; the processor will enter supervisor
mode and jump to the SWI vector at 0x00000008.

Fig. 11 Software Interrupt Instruction

The bit field 0-23 of the SWI instruction is empty and can be used to hold an ordinal.
On execution of an SWI instruction, this ordinal can be examined to determine which
SWI procedure to run and gives over 16 million possible SWI functions.

…
Swi, #1 ; call swi function one
…

In the swi handler

register unsigned * link_ptr asm ("r14"); // define a pointer to the link register

Switch ((*(link_ptr-1)) & 0x00FFFFFF) //calculate the number of the swi function
{
Case 0x01 : SWI_Function1(); //Call the function
….
}

This can be used to provide a hardware abstraction layer. In order to access OS calls
or SFR registers, the user code must make a SWI call. All these functions are then
running in a supervisor mode, with a separate stack and link register.

As well as instructions to transfer data to and from memory and to CPU registers, the
ARM 7 has instructions to save and load multiple registers. It is possible to load or
save all 16 CPU registers or a selection of registers in a single instruction. Needless to
say, this is extremely useful when entering or exiting a procedure.

Fig. 12 Load and Store Multiple Instruction Operation

The CPSR and SPSR are only accessed by two special instructions to move their
contents to and from a CPU register. No other instruction can act on them directly.

Fig. 13 Programming The SPSR And CPSR Registers

THUMB Support

The ARM processor is capable of executing both 32-bit (ARM) instructions and 16-
Bit (Thumb instructions). The Thumb instruction set must always be entered by
running a Branch exchange or branch link exchange instruction and NOT by setting
the T bit in the CPSR. Thumb instructions are essentially a mapping of their 32 bit
cousins but unlike the ARM instructions, they are unconditionally executed except
though for branch instructions.

Fig. 14 Thumb Instruction Processing

Thumb instructions only have unlimited access to registers R0-R7 and R13 – R15. A
reduced number of instructions can access the full register set.

Fig.15 Thumb programmers model

The Thumb instruction set has the same load and store multiple instructions as ARM
and in addition, has a modified version of these instructions in the form of PUSH and
POP that implement a full descending stack in the conventional manner. The Thumb
instruction set also supports the SWI instruction, except that the ordinal field is only 8
bits long to support 256 different SWI calls. When the processor is executing Thumb
code and an exception occurs, it will switch to ARM mode in order to process the
exception. When the CPSR is restored the, Thumb bit will be reset and the processor
continues to run Thumb instructions

Fig.16 Thumb Exception Processing

Thumb has a much higher code density than ARM code, needing some 70% of the
space of the latter. However in a 32-bit memory, ARM code is some 40% faster than
Thumb. However it should be noted that if you only have 16-bit wide memory then
Thumb code will be faster than ARM code by about 45%. Finally the other important
aspect of Thumb is that it can use up to 30% less power than ARM code.

	An Introduction to the ARM 7 Architecture
	Basic Characteristics
	ARM7 Programming Model
	Exception And Interrupt Modes
	Data Types
	ARM7 Program Flow Control

