//The Luhn algorithm will detect any single-digit error, as well as almost all
//transpositions of adjacent digits. It will not, however, detect transposition

//of the two-digit sequence 09 to 90 (or vice versa). Other, more complex check-
//digit algorithms (such as the Verhoeff algorithm) can detect more transcription
//errors. The Luhn mod N algorithm is an extension that supports non-numerical

// strings.

//

//The formula verifies a number against its included check digit, which is usually
//appended to a partial account number to generate the full account number. This
//account number must pass the following test:

//

// 1. Starting with the rightmost digit (which is the check digit) and moving left,
//double the value of every second digit. For any digits that thus become 10 or more,
//add their digits together as if casting out nines. For example, 1111 becomes 2121,
//while 8763 becomes 7733 (from 2x6=12 e 1+2=3 and 2x8=16 e 1+6=7).

//

// 2. Add all these digits together. For example, if 1111 becomes 2121, then 2+1+2+1
//is 6; and 8763 becomes 7733, so 7+74+3+3 is 20.

//

// 3. If the total ends in 0 (put another way, if the total modulus 10 is congruent
//to 0), then the number is valid according to the Luhn formula; else it is not wvalid.
//So, 1111 is not valid (as shown above, it comes out to 6), while 8763 is valid (as
//shown above, it comes out to 20).



//LUHN algorithm to generate a check digit for a string

//of numbers that are randomly selected for demonstartion
//the array returned is the random string and the check digit
//in the last location

//

int [] CreateNumber (int length) {

Random random = new Random() ;
int [] digits = new int [length];

for(int i = 0; 1 < length - 1; 1i++)
digits[i] = random.Next (10) ;
int sum = 0;
bool alt = true;
for(int i = length - 2; i >= 0; i--)
if (alt)
int temp = digits[i];
temp *= 2;
if (temp > 9)
temp -= 9;
sum += temp;
}
else
sum += digits[i];

alt = lalt;

}

int modulo = sum % 10;
if (modulo > 0)

digits[length-1] = 10 - modulo;

return digits;



//LUHN algorithm to verify a check digit for a string
//of numbers that are submitted to the function. returns
//true is it is a valid LUHN sequence

//
//446-667-651 is a valid number
//
bool CheckNumber (int[] digits) {

int sum = 0;
bool alt = false;

for(int i = digits.Length - 1; i >= 0; 1i--)
if (alt)

digits[i] *= 2;
if (digits[i] > 9)

digits[i] -= 9; // equivalent to adding the digits of value
sum += digits[i];
alt = lalt;
}

return sum % 10 == 0;



