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6
The Circular Functions
and Their Graphs

In August 2003, the planet Mars passed closer to Earth than it had in 
almost 60,000 years. Like Earth, Mars rotates on its axis and thus has days
and nights. The photos here were taken by the Hubble telescope and show
two nearly opposite sides of Mars. (Source:
www.hubblesite.org) In Exercise 92 of
Section 6.2, we examine the length of a
Martian day.

Phenomena such as rotation of a planet
on its axis, high and low tides, and chang-
ing of the seasons of the year are modeled
by periodic functions. In this chapter, we
see how the trigonometric functions of the
previous chapter, introduced there in the
context of ratios of the sides of a right tri-
angle, can also be viewed from the perspec-
tive of motion around a circle.

6.1 Radian Measure

6.2 The Unit Circle and Circular Functions

6.3 Graphs of the Sine and Cosine
Functions

6.4 Graphs of the Other Circular
Functions

Summary Exercises on Graphing Circular
Functions

6.5 Harmonic Motion
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534 CHAPTER 6 The Circular Functions and Their Graphs

6.1 Radian Measure
Radian Measure ■ Converting Between Degrees and Radians ■ Arc Length of a Circle ■ Area of a Sector
of a Circle

x

y

r

r0

� = 1 radian

�

Figure 1

TEACHING TIP Students may resist
the idea of using radian measure.
Explain that radians have wide
applications in angular motion
problems (seen in Section 6.2), as
well as engineering and science.

TEACHING TIP Emphasize the 
difference between an angle of
a degrees (written a°) and an
angle of a radians (written 
or a). Caution students that
although radian measures are
often given exactly in terms of �,
they can also be approximated
using decimals.

ar,ar,

Radian Measure In most applications of trigonometry, angles are measured
in degrees. In more advanced work in mathematics, radian measure of angles is
preferred. Radian measure allows us to treat the trigonometric functions as func-
tions with domains of real numbers, rather than angles.

Figure 1 shows an angle in standard position along with a circle of 
radius r. The vertex of is at the center of the circle. Because angle intercepts
an arc on the circle equal in length to the radius of the circle, we say that angle 
has a measure of 1 radian.

Radian

An angle with its vertex at the center of a circle that intercepts an arc on the
circle equal in length to the radius of the circle has a measure of 1 radian.

It follows that an angle of measure 2 radians intercepts an arc equal in
length to twice the radius of the circle, an angle of measure radian intercepts
an arc equal in length to half the radius of the circle, and so on. In general, if is
a central angle of a circle of radius r and intercepts an arc of length s, then the 
radian measure of is 

Converting Between Degrees and Radians The circumference of a 
circle—the distance around the circle—is given by where r is the ra-
dius of the circle. The formula shows that the radius can be laid off 
times around a circle. Therefore, an angle of 360°, which corresponds to a com-
plete circle, intercepts an arc equal in length to times the radius of the circle.
Thus, an angle of 360° has a measure of radians:

An angle of 180° is half the size of an angle of 360°, so an angle of 180° has
half the radian measure of an angle of 360°.

We can use the relationship to develop a method for con-
verting between degrees and radians as follows.

Divide by 180. or Divide by �.

Converting Between Degrees and Radians

1. Multiply a degree measure by radian and simplify to convert to radians.

2. Multiply a radian measure by and simplify to convert to degrees.180�
�

�
180

1 radian �
180�

�
1� �

�

180
 radian

180� � � radians

180� � � radians

Degree�radian relationship180� �
1

2
�2�� radians � � radians

360� � 2� radians.

2�
2�

2�C � 2�r
C � 2�r,

s
r.�

�
�

1
2

�
��

�
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6.1 Radian Measure 535

Some calculators (in radian
mode) have the capability to
convert directly between de-
cimal degrees and radians.
This screen shows the con-
versions for Example 1. Note
that when exact values invol-
ving � are required, such as

     in part (a), calculator ap-

proximations are not accept-
able.

4
�

This screen shows how a cal-
culator converts the radian
measures in Example 2 to de-
gree measures.

x

y

0
30°

30 degrees

x

y

0

30 radians

Figure 2

EXAMPLE 1 Converting Degrees to Radians

Convert each degree measure to radians.

(a) 45° (b) 249.8°

Solution

(a) Multiply by radian.

(b) Nearest thousandth

Now try Exercises 1 and 13.

EXAMPLE 2 Converting Radians to Degrees

Convert each radian measure to degrees.

(a) (b) 4.25 (Give the answer in decimal degrees.)

Solution

(a) (b)

Multiply by Use a calculator.

Now try Exercises 21 and 31.

If no unit of angle measure is specified, then radian measure is understood.

C A U T I O N Figure 2 shows angles measuring 30 radians and 30°. Be careful
not to confuse them.

The following table and Figure 3 on the next page give some equivalent 
angles measured in degrees and radians. Keep in mind that 180� � � radians.

180�
� .

4.25 � 4.25�180�

� � � 243.5�
9�

4
�

9�

4 �180�

� � � 405�

9�

4

249.8� � 249.8� �

180
 radian� � 4.360 radians

�
18045� � 45� �

180
 radian� �

�

4
 radian

Degrees Radians Degrees Radians

Exact Approximate Exact Approximate

0° 0 0 90° 1.57

30° .52 180° � 3.14

45° .79 270° 4.71

60° 1.05 360° 2� 6.28
�

3

3�

2

�

4

�

6

�

2
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TEACHING TIP To help students
appreciate radian measure, show
them that in degrees the formula
for arc length is

(See Exercise 54.)

s �
�

360
�2� r� �

�� r
180

.

536 CHAPTER 6 The Circular Functions and Their Graphs

Looking Ahead to Calculus
In calculus, radian measure is much

easier to work with than degree mea-

sure. If x is measured in radians, then

the derivative of is

However, if x is measured in degrees,

then the derivative of is

f ��x� �
�

180
 cos x.

f �x� � sin x

f ��x� � cos x.

f �x� � sin x

Figure 3

We use radian measure to simplify certain formulas, two of which follow.
Each would be more complicated if expressed in degrees.

Arc Length of a Circle We use the first for-
mula to find the length of an arc of a circle. This
formula is derived from the fact (proven in geom-
etry) that the length of an arc is proportional to the
measure of its central angle.

In Figure 4, angle QOP has measure 1 radian
and intercepts an arc of length r on the circle.
Angle ROT has measure � radians and intercepts
an arc of length s on the circle. Since the lengths
of the arcs are proportional to the measures of
their central angles,

Multiplying both sides by r gives the following result.

Arc Length

The length s of the arc intercepted on a circle of radius r by a central angle
of measure � radians is given by the product of the radius and the radian
measure of the angle, or

� in radians.

C A U T I O N When applying the formula the value of � must be
expressed in radians.

s � r�,

s � r�,

s

r
�

�

1
.

0° = 0

90° =

30° =

45° =

60° =120° =

135° =

150° =

180° = �

210° =

225° =

240° =

330° =

315° =

300° =
270° =

�
2 �

3
�
4

�
6

11�
6

7�
45�

3

5�
4

7�
6

5�
6

3�
4

2�
3

4�
3 3�

2

y

rr O P
� radians x

rs

1 radian

QT

R

Figure 4
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6.1 Radian Measure 537

r = 18.2 cm

s
3�
8

Equator
34°

40°

6° Los Angeles

Reno
s

6400 km

Figure 5

EXAMPLE 3 Finding Arc Length Using 

A circle has radius 18.2 cm. Find the length of the arc intercepted by a central
angle having each of the following measures.

(a) (b) 144°

Solution

(a) As shown in the figure, and 

Arc length formula

Substitute for r and �.

(b) The formula requires that � be measured in radians. First, convert �
to radians by multiplying 144° by radian.

Convert from degrees to radians.

The length s is given by

Now try Exercises 49 and 51.

EXAMPLE 4 Using Latitudes to Find the Distance Between Two Cities

Reno, Nevada, is approximately due north of Los Angeles. The latitude of Reno
is 40° N, while that of Los Angeles is 34° N. (The N in 34° N means north of the
equator.) The radius of Earth is 6400 km. Find the north-south distance between
the two cities.

Solution Latitude gives the measure of a central angle with vertex at Earth’s
center whose initial side goes through the equator and whose terminal side goes
through the given location. As shown in Figure 5, the central angle between
Reno and Los Angeles is The distance between the two cities
can be found by the formula after 6° is first converted to radians.

The distance between the two cities is

Let and 

Now try Exercise 55.

� � �
30 .r � 6400s � r� � 6400��

30� � 670 km.

6� � 6� �

180� �
�

30
 radian

s � r�,
40� � 34� � 6�.

s � r� � 18.2�4�

5 � �
72.8�

5
� 45.7 cm.

144� � 144� �

180� �
4�

5
 radians

�
180

s � r�

 s �
54.6�

8
 cm � 21.4 cm

 s � 18.2�3�

8 � cm

 s � r�

� � 3�
8 .r � 18.2 cm

3�

8
 radians

s � r�
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538 CHAPTER 6 The Circular Functions and Their Graphs

2.5
cm

4.8 cm

Figure 7

multiply
by to solve for �.5

24

4.8 � 48
10 � 24

5 ;

r

The shaded
region is a
sector of
the circle.

�

Figure 8

39.72°

.8725 ft

Figure 6

EXAMPLE 5 Finding a Length Using 

A rope is being wound around a drum with radius .8725 ft. (See Figure 6.) How
much rope will be wound around the drum if the drum is rotated through an 
angle of 39.72°?

Solution The length of rope wound around the drum is the arc length for a cir-
cle of radius .8725 ft and a central angle of 39.72°. Use the formula with
the angle converted to radian measure. The length of the rope wound around the
drum is approximately

Now try Exercise 61(a).

EXAMPLE 6 Finding an Angle Measure Using 

Two gears are adjusted so that the smaller gear drives the larger one, as shown in
Figure 7. If the smaller gear rotates through 225°, through how many degrees
will the larger gear rotate?

Solution First find the radian measure of the angle, and then find the arc length
on the smaller gear that determines the motion of the larger gear. Since

for the smaller gear,

An arc with this length on the larger gear corresponds to an angle measure �, in
radians, where

Substitute for s and 4.8 for r.

Converting � back to degrees shows that the larger gear rotates through

Convert to degrees.

Now try Exercise 63.

Area of a Sector of a Circle A sector of a circle is the portion of the 
interior of a circle intercepted by a central angle. Think of it as a “piece of pie.”
See Figure 8. A complete circle can be thought of as an angle with measure 2�
radians. If a central angle for a sector has measure � radians, then the sector 
makes up the fraction of a complete circle. The area of a complete circle with
radius r is Therefore,

in radians.�area of the sector �
�

2�
��r2� �

1

2
r2�,

A � �r2.

�
2�

� � 125�
192

125�

192 �180�

� � � 117�.

 
125�

192
� �.

25�
8 

25�

8
� 4.8�

 s � r�

s � r� � 2.5�5�

4 � �
12.5�

4
�

25�

8
 cm.

225� � 5�
4  radians,

s � r�

 s � r� � .8725�39.72� �

180�	 � .6049 ft.

s � r�,

s � r�
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6.1 Radian Measure 539

15°

32
1 

m

Figure 9

This discussion is summarized as follows.

Area of a Sector

The area of a sector of a circle of radius r and central angle � is given by

� in radians.

C A U T I O N As in the formula for arc length, the value of � must be in radi-
ans when using this formula for the area of a sector.

EXAMPLE 7 Finding the Area of a Sector-Shaped Field

Find the area of the sector-shaped field shown in Figure 9.

Solution First, convert 15° to radians.

Now use the formula to find the area of a sector of a circle with radius 

Now try Exercise 77.

A �
1

2
r2� �

1

2
�321�2��

12� � 13,500 m2

r � 321.

15� � 15� �

180� �
�

12
 radian

A �
1
2

r2�,

Convert each degree measure to radians. Leave answers as multiples of . See
Example 1(a).

1. 60� 2. 90� 3. 150� 4. 270�

5. 315� 6. 480� 7. �45� 8. �210�

Convert each degree measure to radians. See Example 1(b).

9. 39� 10. 74� 11.

12. 13. 64.29� 14. 122.62�

Concept Check In Exercises 15–18, each angle is an integer when measured in
radians. Give the radian measure of the angle.

15. 16.

x

y

0

θ
θ

0
x

y

�

174� 50�

139� 10�

�
1. 2. 3. 4.

5. 6. 7.

8. 9. .68 10. 1.29

11. 2.43 12. 3.05 13. 1.122
14. 2.140 15. 1 16. 2

�
7�

6

�
�

4

8�

3

7�

4

3�

2

5�

6

�

2

�

3

6.1 Exercises
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540 CHAPTER 6 The Circular Functions and Their Graphs

17. 3 18. �1 21. 60�
22. 480� 23. 315� 24. 120�
25. 330� 26. 675� 27. �30�
28. �63� 29. 114.6�
30. 286.5� 31. 99.7� 32. 19.6�
33. �564.2� 34. �198.9�

35. 1 36. 37.

38. 39. �1 40.

41. 42. �1

3

2

1

2

1

2

�

3

3

2

9

17. 18.

19. In your own words, explain how to convert

(a) degree measure to radian measure; (b) radian measure to degree measure.

20. Explain the difference between degree measure and radian measure.

Convert each radian measure to degrees. See Example 2(a).

21. 22. 23. 24.

25. 26. 27. 28.

Convert each radian measure to degrees. Give answers using decimal degrees to the
nearest tenth. See Example 2(b).

29. 2 30. 5 31. 1.74

32. .3417 33. �9.84763 34. �3.47189

Relating Concepts
For individual or collaborative investigation 

(Exercises 35–42)

In anticipation of the material in the next section, we show how to find the trigonomet-
ric function values of radian-measured angles. Suppose we want to find . One way
to do this is to convert radians to 150°, and then use the methods of Chapter 5 
to evaluate:

. (Section 5.3)

Sine is positive Reference angle
in quadrant II. for 150�

Use this technique to find each function value. Give exact values.

35. 36. 37. 38.

39. 40. 41. 42. tan��
9�

4 �cos��
�

6 �sin��
7�

6 �sec �

cos 
�

3
cot 

2�

3
csc 

�

4
tan 

�

4

sin 
5�

6
� sin 150� � � sin 30� �

1

2

5�
6

sin 5�
6

�
7�

20
�

�

6

15�

4

11�

6

2�

3

7�

4

8�

3

�

3

x

y

0 θ
x

y

0

θ

9
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Concept Check Find the exact length of each arc intercepted by the given central
angle.

43. 44.

Concept Check Find the radius of each circle.

45. 46.

Concept Check Find the measure of each central angle (in radians).

47. 48.

Unless otherwise directed, give calculator approximations in your answers in the rest
of this exercise set.

Find the length of each arc intercepted by a central angle in a circle of radius r. See
Example 3.

49. cm, radians 50. cm, radians

51. m, 52. cm, 

53. Concept Check If the radius of a circle is doubled, how is the length of the arc
intercepted by a fixed central angle changed?

54. Concept Check Radian measure simplifies many formulas, such as the formula for
arc length, . Give the corresponding formula when is measured in degrees
instead of radians.

Distance Between Cities Find the distance in kilometers between each pair of cities,
assuming they lie on the same north-south line. See Example 4.

55. Panama City, Panama, 9� N, and Pittsburgh, Pennsylvania, 40� N

56. Farmersville, California, 36� N, and Penticton, British Columbia, 49� N

57. New York City, New York, 41� N, and Lima, Peru, 12� S

58. Halifax, Nova Scotia, 45� N, and Buenos Aires, Argentina, 34� S

�s � r�

� � 135�r � 71.9� � 60�r � 4.82

� �
11�

10
r � .892� �

2�

3
r � 12.3

�

6

4
�

3

3
�

3�

�
2

6�

3�
4

12

�
3

4

�
2

6.1 Radian Measure 541

43. 44. 45. 8 46. 6
47. 1 48. 1.5 49. 25.8 cm
50. 3.08 cm 51. 5.05 m
52. 169 cm 53. The length is 

doubled. 54.

55. 3500 km 56. 1500 km
57. 5900 km 58. 8800 km

s �
�r�

180

4�2�
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542 CHAPTER 6 The Circular Functions and Their Graphs

59. 44� N 60. 43� N
61. (a) 11.6 in. (b)
62. 12.7 cm 63. 38.5�
64. 18.7 cm 65. 146 in.
66. (a) 39,616 rotations

37� 5�

59. Latitude of Madison Madison, South Dakota, and Dallas, Texas, are 1200 km
apart and lie on the same north-south line. The latitude of Dallas is 33� N. What is
the latitude of Madison?

60. Latitude of Toronto Charleston, South Carolina, and Toronto, Canada, are 1100 km
apart and lie on the same north-south line. The latitude of Charleston is 33� N. What
is the latitude of Toronto?

Work each problem. See Examples 5 and 6.

61. Pulley Raising a Weight

(a) How many inches will the weight in the figure rise if
the pulley is rotated through an angle of ?

(b) Through what angle, to the nearest minute, must the
pulley be rotated to raise the weight 6 in.?

62. Pulley Raising a Weight Find the radius of the pulley in
the figure if a rotation of 51.6� raises the weight 11.4 cm.

63. Rotating Wheels The rotation of the smaller
wheel in the figure causes the larger wheel to rotate.
Through how many degrees will the larger wheel
rotate if the smaller one rotates through 60.0�?

64. Rotating Wheels Find the radius of the larger
wheel in the figure if the smaller wheel rotates
80.0� when the larger wheel rotates 50.0�.

65. Bicycle Chain Drive The figure
shows the chain drive of a bicycle.
How far will the bicycle move if
the pedals are rotated through
180�? Assume the radius of the
bicycle wheel is 13.6 in.

66. Pickup Truck Speedometer The speedometer of Terry’s small pickup truck is
designed to be accurate with tires of radius 14 in.

(a) Find the number of rotations of a tire in 1 hr if the truck is driven at 55 mph.

71� 50�

8.16
cm

5.23
cm

11.7
cm r

1.38 in.

4.72 in.

9.27 in.

r
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(b) Suppose that oversize tires of radius 16 in. are placed on the truck. If the truck is
now driven for 1 hr with the speedometer reading 55 mph, how far has the truck
gone? If the speed limit is 55 mph, does Terry deserve a speeding ticket?

If a central angle is very small, there is little differ-
ence in length between an arc and the inscribed
chord. See the figure. Approximate each of the fol-
lowing lengths by finding the necessary arc length.
(Note: When a central angle intercepts an arc, the
arc is said to subtend the angle.)

67. Length of a Train A railroad track in the desert is 3.5 km away. A train on the
track subtends (horizontally) an angle of . Find the length of the train.

68. Distance to a Boat The mast of Brent Simon’s boat is 32 ft high. If it subtends an
angle of , how far away is it?

Concept Check Find the area of each sector.

69. 70.

Concept Check Find the measure (in radians) of each central angle. The number in-
side the sector is the area.

71. 72.

Find the area of a sector of a circle having radius r and central angle . See Example 7.

73. m, radians 74. km, radians

75. ft, radians 76. yd, radians

77. cm, 78. m, 

79. mi, 80. km, 

Work each problem.

81. Find the measure (in radians) of a central angle of a sector of area 16 in a circle
of radius 3.0 in.

82. Find the radius of a circle in which a central angle of radian determines a sector of
area 64 .m2

�
6

in.2

� � 270�r � 90.0� � 135�r � 40.0

� � 125�r � 18.3� � 81�r � 12.7

� �
5�

6
r � 90.0� �

�

2
r � 30.0

� �
2�

3
r � 59.8� �

5�

6
r � 29.2

�

8 sq units

4

3 sq units

2

8

4�

�

6

2�

�

2� 10�

3� 20�
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66. (b) 62.9 mi; yes
67. .20 km 68. 850 ft
69. 70. 71. 1.5
72. 1 73. 1116.1 
74. 3744.8 75. 706.9 
76. 10,602.9 77. 114.0 
78. 365.3 79. 1885.0 
80. 19,085.2 81. 3.6
82. 16 m

km2
mi2m2

cm2yd2
ft2km2

m2
16�6�

Arc length ≈  length of inscribed chord

Inscribed chord

Arc
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544 CHAPTER 6 The Circular Functions and Their Graphs

83. (a) ; (b) 480 ft

(c) ft

(d) approximately 672 
84. 75.4 
85. (a) 140 ft (b) 102 ft
(c) 622 
86. (a) 550 m (b) 1800 m
87. 1900 88. 1.15 miyd2

ft2

in.2
ft2

160

9
� 17.8

2�

27
13

1

3
�

83. Measures of a Structure The figure shows Medicine Wheel, a Native American
structure in northern Wyoming. This circular structure is perhaps 2500 yr old. There
are 27 aboriginal spokes in the wheel, all equally spaced.

(a) Find the measure of each central angle in degrees and in radians.
(b) If the radius of the wheel is 76 ft, find the circumference.
(c) Find the length of each arc intercepted by consecutive pairs of spokes.
(d) Find the area of each sector formed by consecutive spokes.

84. Area Cleaned by a Windshield Wiper The Ford
Model A, built from 1928 to 1931, had a single
windshield wiper on the driver’s side. The total
arm and blade was 10 in. long and rotated back
and forth through an angle of 95�. The shaded
region in the figure is the portion of the wind-
shield cleaned by the 7-in. wiper blade. What is
the area of the region cleaned?

85. Circular Railroad Curves In the United States, circular railroad curves are 
designated by the degree of curvature, the central angle subtended by a chord of 
100 ft. Suppose a portion of track has curvature 42�. (Source: Hay, W., Railroad
Engineering, John Wiley & Sons, 1982.)

(a) What is the radius of the curve?
(b) What is the length of the arc determined by the 100-ft chord?
(c) What is the area of the portion of the circle bounded by the arc and the 100-ft

chord?

86. Land Required for a Solar-Power Plant A 300-megawatt solar-power plant
requires approximately 950,000 of land area in order to collect the required
amount of energy from sunlight.

(a) If this land area is circular, what is its radius?
(b) If this land area is a 35� sector of a circle, what is its radius?

87. Area of a Lot A frequent problem in surveying 
city lots and rural lands adjacent to curves of highways
and railways is that of finding the area when one or
more of the boundary lines is the arc of a circle. Find
the area of the lot shown in the figure. (Source:
Anderson, J. and E. Michael, Introduction to
Surveying, McGraw-Hill, 1985.)

88. Nautical Miles Nautical miles are used by
ships and airplanes. They are different from
statute miles, which equal 5280 ft. A nautical
mile is defined to be the arc length along the
equator intercepted by a central angle AOB of 
1 min, as illustrated in the figure. If the equato-
rial radius of Earth is 3963 mi, use the arc
length formula to approximate the number of
statute miles in 1 nautical mile. Round your
answer to two decimal places.

m2

10
in

.

95°
7 in.

60°

30 yd

40 yd

B

A

O

Nautical
mile

Not to scale
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89. Circumference of Earth The first accurate
estimate of the distance around Earth was
done by the Greek astronomer Eratosthenes
(276–195 B.C.), who noted that the noontime
position of the sun at the summer solstice dif-
fered by from the city of Syene to the
city of Alexandria. (See the figure.) The dis-
tance between these two cities is 496 mi. Use
the arc length formula to estimate the radius of
Earth. Then find the circumference of Earth.
(Source: Zeilik, M., Introductory Astronomy
and Astrophysics, Third Edition, Saunders
College Publishers, 1992.)

90. Diameter of the Moon The distance to the moon is approximately 238,900 mi. Use
the arc length formula to estimate the diameter d of the moon if angle in the figure
is measured to be .517�.

91. Concept Check If the radius of a circle is doubled and the central angle of a sec-
tor is unchanged, how is the area of the sector changed?

92. Concept Check Give the corresponding formula for the area of a sector when the
angle is measured in degrees.

d�

Not to scale

�

7� 12�
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89. radius: 3947 mi;
circumference: 24,800 mi
90. approximately 2156 mi
91. The area is quadrupled.

92. A �
�r2�

360

496 mi

Syene

Alexandria

Shadow

7° 12'

7° 12'

Sun's rays at noon

In Section 5.2, we defined the six trigonometric functions in such a way that the
domain of each function was a set of angles in standard position. These angles
can be measured in degrees or in radians. In advanced courses, such as calculus,
it is necessary to modify the trigonometric functions so that their domains con-
sist of real numbers rather than angles. We do this by using the relationship 
between an angle � and an arc of length s on a circle.

Circular Functions In Figure 10, we start at the point and measure an
arc of length s along the circle. If then the arc is measured in a counter-
clockwise direction, and if then the direction is clockwise. (If then
no arc is measured.) Let the endpoint of this arc be at the point The circle
in Figure 10 is a unit circle—it has center at the origin and radius 1 unit (hence
the name unit circle). Recall from algebra that the equation of this circle is

(Section 2.1)x2 � y2 � 1.

�x, y�.
s � 0,s � 0,

s 	 0,
�1, 0�

6.2 The Unit Circle and Circular Functions
Circular Functions ■ Finding Values of Circular Functions ■ Determining a Number with a Given Circular
Function Value ■ Angular and Linear Speed

x

y

0

x = cos s
y = sin s

(x, y)

(1, 0)

(0, 1)

(–1, 0)

(0, –1)

Arc of length s

Unit circle x2 + y2 = 1

�

Figure 10
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546 CHAPTER 6 The Circular Functions and Their Graphs

TEACHING TIP Draw a unit circle
on the chalkboard and trace a
point slowly counterclockwise,
starting at Students should
see that the y-value (sine function)
starts at 0, increases to 1 (at 
radians), decreases to 0 (at � radi-
ans), decreases again to �1 (at 
radians), and returns to 0 after
one full revolution (2� radians).
This type of analysis will help illus-
trate the range associated with the
sine and cosine functions.

3�
2

�
2

�1, 0�.

*The authors thank Professor Marvel Townsend of the University of Florida for her suggestion to include
this figure.

Looking Ahead to Calculus
If you plan to study calculus, you must

become very familiar with radian mea-

sure. In calculus, the trigonometric or

circular functions are always under-

stood to have real number domains.

We saw in the previous section that the radian measure of � is related to the
arc length s. In fact, for � measured in radians, we know that Here,

so s, which is measured in linear units such as inches or centimeters, is
numerically equal to �, measured in radians. Thus, the trigonometric functions
of angle � in radians found by choosing a point on the unit circle can be
rewritten as functions of the arc length s, a real number. When interpreted this
way, they are called circular functions.

Circular Functions

Since x represents the cosine of s and y represents the sine of s, and because
of the discussion in Section 6.1 on converting between degrees and radians, we
can summarize a great deal of information in a concise manner, as seen in
Figure 11.*

Figure 11

N O T E Since and we can replace x and y in the equation
and obtain the Pythagorean identity

The ordered pair represents a point on the unit circle, and therefore

so  �1 
 cos s 
 1 and �1 
 sin s 
 1.

 �1 
 x 
 1 and �1 
 y 
 1,

�x, y�

cos2 s � sin2 s � 1.

x2 � y2 � 1
cos s � x,sin s � y

(0, 1)

(1, 0)

(0, –1)

(–1, 0) 00°180°

60°
90°

150°

210°

300°

360°
x

y

315°
330°

2��

135°
120°

225°
240°
270°

45°
30°

1
2

1
2

1
2

(   ,     )√3
2

1
2(   , –     )√3

2
1
2(–   , –     )√3

2

(     ,     )√2
2

√2
2

(    , –   )√3
2

(    ,   )√3
2

1
2

1
2

(–   ,     )√3
2

(–     ,     )√2
2

√2
2

(     , –     )√2
2

√2
2

1
2(–    , –   )√3

2

(–     , –     )√2
2

√2
2

(–     ,   )√3
2

Unit circle x2 + y2 = 1

3�

2

5�

3

7�

44�

3

5�

4

7�

6

5�

6

3�

4

2�

3

11�

6

�

3

�

2
�

4
�

6

0

 cot s �
x
y

( y � 0) sec s �
1
x

(x � 0) csc s �
1
y

( y � 0)

 tan s �
y
x

(x � 0) cos s � x sin s � y

�x, y�

r � 1,
s � r�.
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x

y

(0, 1)

(1, 0)

(–1, 0)

(0, –1)

x2 + y2 = 1

s = �

(cos s, sin s) = (x, y)

0

�

Figure 12

For any value of s, both sin s and cos s exist, so the domain of these functions is
the set of all real numbers. For tan s, defined as x must not equal 0. The only 
way x can equal 0 is when the arc length s is and so on. To
avoid a 0 denominator, the domain of the tangent function must be restricted to
those values of s satisfying

n any integer.

The definition of secant also has x in the denominator, so the domain of secant is
the same as the domain of tangent. Both cotangent and cosecant are defined with
a denominator of y. To guarantee that the domain of these functions must
be the set of all values of s satisfying

In summary, the domains of the circular functions are as follows.

Domains of the Circular Functions

Assume that n is any integer and s is a real number.

Sine and Cosine Functions:

Tangent and Secant Functions:

Cotangent and Cosecant Functions:

Finding Values of Circular Functions The circular functions (functions
of real numbers) are closely related to the trigonometric functions of angles
measured in radians. To see this, let us assume that angle � is in standard posi-
tion, superimposed on the unit circle, as shown in Figure 12. Suppose further
that � is the radian measure of this angle. Using the arc length formula 
with we have Thus, the length of the intercepted arc is the real
number that corresponds to the radian measure of �. Using the definitions of the
trigonometric functions, we have

and so on. As shown here, the trigonometric functions and the circular functions
lead to the same function values, provided we think of the angles as being in ra-
dian measure. This leads to the following important result concerning evaluation
of circular functions.

Evaluating a Circular Function

Circular function values of real numbers are obtained in the same manner as
trigonometric function values of angles measured in radians. This applies
both to methods of finding exact values (such as reference angle analysis)
and to calculator approximations. Calculators must be in radian mode when
finding circular function values.

sin � �
y

r
�

y

1
� y � sin s, and cos � �

x

r
�

x

1
� x � cos s,

s � �.r � 1,
s � r�

{s �� s � n�}

�s �� s � (2n � 1)
�

2 

(�	, 	)

s � n�, n any integer.

y � 0,

s � �2n � 1�
�

2
,

�
3�
2 ,3�

2 ,�
�
2 ,�

2 ,

y
x ,
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x

y

(0, –1)

(0, 1)

(–1, 0)

(1, 0)

� = 3�
2

0

Figure 13

TEACHING TIP Point out the impor-
tance of being able to sketch the
unit circle as in Figure 13. This will
enable students to more easily
determine function values of mul-

tiples of 
�

2
.

EXAMPLE 1 Finding Exact Circular Function Values

Find the exact values of and 

Solution Evaluating a circular function at the real number is equivalent to 
evaluating it at radians. An angle of radians intersects the unit circle at the
point as shown in Figure 13. Since 

it follows that

Now try Exercise 1.

EXAMPLE 2 Finding Exact Circular Function Values

(a) Use Figure 11 to find the exact values of and 

(b) Use Figure 11 to find the exact value of 

(c) Use reference angles and degree/radian conversion to find the exact value of

Solution

(a) In Figure 11, we see that the terminal side of radians intersects the unit 

circle at Thus,

(b) Angles of radians and radians are coterminal. Their terminal sides 

intersect the unit circle at so 

(c) An angle of radians corresponds to an angle of 120°. In standard posi-
tion, 120° lies in quadrant II with a reference angle of 60°, so

Cosine is negative in quadrant II.

Reference angle (Section 5.3)

Now try Exercises 7, 17, and 21.

N O T E Examples 1 and 2 illustrate that there are several methods of finding
exact circular function values.

cos 
2�

3
� cos 120° � �cos 60� � �

1

2
.

2�
3

tan��
5�

3 � � tan 
�

3
�


3
2
1
2

� 
3.

�1
2 , 
3

2 �,
�
3�

5�
3

cos 
7�

4
�


2

2
and sin 

7�

4
� �


2

2
.

�
2
2 ,�
2

2 �.
7�
4

cos 2�
3 .

tan��
5�
3 �.

sin 7�
4 .cos 7�

4

sin 
3�

2
� �1, cos 

3�

2
� 0, and tan 

3�

2
 is undefined.

sin s � y, cos s � x, and tan s �
y

x
,

�0, �1�,

3�
2

3�
2

3�
2

tan 3�
2 .cos 3�

2 ,sin 3�
2 ,
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6.2 The Unit Circle and Circular Functions 549

The calculator is set to show
four decimal digits in the
answer.

This screen supports the result
of Example 4(b). The calcula-
tor is in radian mode.

Radian mode

This is how a calculator dis-
plays the result of Example
3(a), correct to four decimal
digits.

TEACHING TIP Remind students
not to use the and

keys when evaluating recip-
rocal functions with a calculator.
tan�1,

cos�1,sin�1,

EXAMPLE 3 Approximating Circular Function Values

Find a calculator approximation to four decimal places for each circular func-
tion value.

(a) cos 1.85 (b) cos .5149 (c) cot 1.3209 ( d )

Solution

(a) With a calculator in radian mode, we find 

(b) Use a calculator in radian mode.

(c) As before, to find cotangent, secant, and cosecant function values, we
must use the appropriate reciprocal functions. To find cot 1.3209, first find
tan 1.3209 and then find the reciprocal.

(d)

Now try Exercises 23, 29, and 33.

C A U T I O N A common error in trigonometry is using calculators in degree
mode when radian mode should be used. Remember, if you are finding a circu-
lar function value of a real number, the calculator must be in radian mode.

Determining a Number with a Given Circular Function Value Recall
from Section 5.3 how we used a calculator to determine an angle measure, given
a trigonometric function value of the angle.

EXAMPLE 4 Finding a Number Given Its Circular Function Value

(a) Approximate the value of s in the interval if 

(b) Find the exact value of s in the interval if 

Solution

(a) Since we are given a cosine value and want to determine the real number in
having this cosine value, we use the inverse cosine function of a cal-

culator. With the calculator in radian mode, we find

(Section 5.3)

See Figure 14. (Refer to your owner’s manual to determine how to evaluate
the and functions with your calculator.)

(b) Recall that and in quadrant III is positive. Therefore,

and Figure 15 supports this result.

Now try Exercises 49 and 55.

s � 5�
4 .

tan�� �
�

4 � � tan 
5�

4
� 1,

tan stan �4 � 1,

tan�1cos�1,sin�1,

cos�1�.9685� � .2517.

�0, �
2 �

tan s � 1.��, 3�
2 �,

cos s � .9685.�0, �
2 �,

sec��2.9234� �
1

cos��2.9234�
� �1.0243

cot 1.3209 �
1

tan 1.3209
� .2552

cos .5149 � .8703

cos 1.85 � �.2756.

sec��2.9234�

Figure 14

Figure 15
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550 CHAPTER 6 The Circular Functions and Their Graphs

(by similar triangles) � tan �

AB �
AB

1
�

AB

AO
�

y

x

OQ � x �
x

1
� cos �;

PQ � y �
y

1
� sin �;

CONNECTIONS A convenient way to see the sine, cosine, and tan-
gent trigonometric ratios geometrically is shown in Figure 16 for � in quad-
rants I and II. The circle shown is the unit circle, which has radius 1. By
remembering this figure and the segments that represent the sine, cosine,
and tangent functions, you can quickly recall properties of the trigonometric
functions. Horizontal line segments to the left of the origin and vertical line
segments below the x-axis represent negative values. Note that the tangent
line must be tangent to the circle at for any quadrant in which � lies.

Figure 16

For Discussion or Writing
See Figure 17. Use the definition of the trigono-
metric functions and similar triangles to show that

and 

Angular and Linear Speed The human joint that can be flexed the fastest
is the wrist, which can rotate through 90°, or radians, in .045 sec while holding
a tennis racket. Angular speed � (omega) measures the speed of rotation and is
defined by 

where � is the angle of rotation in radians and t is time. The angular speed of a
human wrist swinging a tennis racket is

The linear speed v at which the tip of the racket travels as a result of flexing
the wrist is given by

where r is the radius (distance) from the tip of the racket to the wrist joint. If
then the speed at the tip of the racket is

or about 48 mph.v � r� � 2�35� � 70 ft per sec,

r � 2 ft,

v � r�,

� �
�

t
�

�
2

.045
� 35 radians per sec.

� �
�

t
,

�
2

AB � tan �.OQ � cos �,PQ � sin �,

x

(1, 0)
1

y

sin �

tan �

� in quadrant II

cos �

�

x

y

sin �

tan �

� in quadrant I

cos �
(1, 0)

1

�

�1, 0�,

O
x

1 y

Q

B

A(1, 0)

P(x, y)

�

Figure 17
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6.2 The Unit Circle and Circular Functions 551

TEACHING TIP Mention that, while
problems involving linear and
angular speed can be solved using
the formula for circumference, the
formulas presented in this section
are much more efficient.

Angular Speed Linear Speed

(� in radians per unit time,
� in radians)

v � r


v �
r�

t

v �
s
t


 �
�

t

In a tennis serve the arm rotates at the shoulder, so the final speed of the racket is
considerably faster. (Source: Cooper, J. and R. Glassow, Kinesiology, Second
Edition, C.V. Mosby, 1968.)

EXAMPLE 5 Finding Angular Speed of a Pulley and Linear Speed of a Belt

A belt runs a pulley of radius 6 cm at 80 revolutions per min.

(a) Find the angular speed of the pulley in radians per second.

(b) Find the linear speed of the belt in centimeters per second.

Solution

(a) In 1 min, the pulley makes 80 revolutions. Each revolution is 2� radians, for
a total of

Since there are 60 sec in 1 min, we find �, the angular speed in radians per
second, by dividing 160� by 60.

(b) The linear speed of the belt will be the same as that of a point on the cir-
cumference of the pulley. Thus,

Now try Exercise 95.

Suppose that an object is moving at a constant speed. If it travels a distance
s in time t, then its linear speed v is given by

If the object is traveling in a circle, then where r is the radius of the
circle and � is the angle of rotation. Thus, we can write

The formulas for angular and linear speed are summarized in the table.

v �
r�

t
.

s � r�,

v �
s

t
.

v � r� � 6�8�

3 � � 16� � 50.3 cm per sec.

� �
160�

60
�

8�

3
 radians per sec

80�2�� � 160� radians per min.
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Earth

Satellite

Not to scale

1600
km

6400
km

Figure 18

EXAMPLE 6 Finding Linear Speed and Distance Traveled by a Satellite

A satellite traveling in a circular orbit 1600 km above the surface of Earth takes
2 hr to make an orbit. The radius of Earth is 6400 km. See Figure 18.

(a) Find the linear speed of the satellite.

(b) Find the distance the satellite travels in 4.5 hr.

Solution

(a) The distance of the satellite from the center of Earth is

For one orbit, and 

(Section 6.1)

Since it takes 2 hr to complete an orbit, the linear speed is

(b)

Now try Exercise 93.

s � vt � 8000��4.5� � 36,000� � 110,000 km

v �
s

t
�

8000�2��
2

� 8000� � 25,000 km per hr.

s � r� � 8000�2�� km.

� � 2�,

r � 1600 � 6400 � 8000 km.

For each value of , find (a) , (b) , and (c) . See Example 1.

1. 2. 3.

4. 5. 6.

Find the exact circular function value for each of the following. See Example 2.

7. 8. 9. 10.

11. 12. 13. 14.

15. 16. 17. 18.

19. 20. 21. 22.

Find a calculator approximation for each circular function value. See Example 3.

23. sin .6109 24. sin .8203 25.

26. 27. tan 4.0203 28. tan 6.4752

29. 30. csc 1.3875 31. sec 2.8440

32. 33. cot 6.0301 34. cot 3.8426sec��8.3429�
csc��9.4946�
cos��5.2825�

cos��1.1519�

cos 
3�

4
tan 

5�

6
csc 

13�

3
sec 

23�

6

sin��
5�

6 �sin��
4�

3 �sec 
5�

4
cos 

7�

4

tan 
17�

3
cos��

4�

3 �cot 
5�

6
csc 

11�

6

sec 
2�

3
tan 

3�

4
cos 

5�

3
sin 

7�

6

� � �
3�

2
� � ��� � 3�

� � 2�� � �� �
�

2

tan �cos �sin ��1. (a) 1 (b) 0 (c) undefined
2. (a) 0 (b) �1 (c) 0
3. (a) 0 (b) 1 (c) 0
4. (a) 0 (b) �1 (c) 0
5. (a) 0 (b) �1 (c) 0
6. (a) 1 (b) 0 (c) undefined

7. 8. 9. �1 10. �2

11. �2 12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. .5736 24. .7314 25. .4068
26. .5397 27. 1.2065
28. .1944 29. 14.3338
30. 1.0170 31. �1.0460
32. �2.1291 33. �3.8665
34. 1.1848

�

2

2
�


3

3

2
3

3

2
3

3
�

1

2

3

2

�
2

2

2
�
3

�
1

2
�
3

1

2
�

1

2

6.2 Exercises
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35. .7 36. �.75 37. 4
38. 4.4 39. negative
40. negative 41. negative
42. positive 43. positive
44. negative

45. ; ; 

; ; 
; 

46. ; ; 

; ; 

; 

47. ; ; 

; ; 

; 

48. ; ; 

; ; 

; 

49. .2095 50. .6720
51. 1.4426 52. 1.2799
53. .3887 54. 1.3634

55. 56.
2�

3

5�

6

csc � � �2sec � � �
2
3

3

cot � � 
3tan � �

3

3

cos � � �

3

2
sin � � �

1

2

csc � � �
13

12
sec � �

13

5

cot � � �
5

12
tan � � �

12

5

cos � �
5

13
sin � � �

12

13

csc � �
17

8
sec � � �

17

15

cot � � �
15

8
tan � � �

8

15

cos � � �
15

17
sin � �

8

17

csc � � 
2sec � � 
2
cot � � 1tan � � 1

cos � �

2

2
sin � �


2

2

Concept Check The figure displays a unit
circle and an angle of 1 radian. The tick
marks on the circle are spaced at every 
two-tenths radian. Use the figure to estimate
each value.

35. cos .8

36. sin 4

37. an angle whose cosine is �.65

38. an angle whose sine is �.95

Concept Check Without using a calculator, decide whether each function value is posi-
tive or negative. (Hint: Consider the radian measures of the quadrantal angles.)

39. cos 2 40. 41. sin 5

42. cos 6 43. tan 6.29 44.

Concept Check Each figure in Exercises 45–48 shows angle in standard position
with its terminal side intersecting the unit circle. Evaluate the six circular function val-
ues of .

45. 46.

47. 48.

Find the value of s in the interval that makes each statement true. See Example 4(a).

49. 50. 51.

52. 53. 54.

Find the exact value of s in the given interval that has the given circular function value.
Do not use a calculator. See Example 4(b).

55. ; 56. ; cos s � �
1

2� �

2
, �	sin s �

1

2� �

2
, �	

csc s � 1.0219sec s � 1.0806cot s � .2994

sin s � .9918cos s � .7826tan s � .2126

�0, �
2 �

x

y

�

1
2(–     , –    )√3

2

1

1
0x

y

�

(    , –    )5
13

12
13

1

10

x

y

�

(–     ,    )8
17

15
17 1

10x

y

�

(     ,      )2
√2

2
√2

1

10

�

�

tan��6.29�
sin��1�

3

5

6

.4 radian
.2 radian

x

y

.4 .6 .8.2

.4

.6

.8

.2 1 radian

.8 radian
.6 radian

2

4
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57. 58. 59.

60. 61.

62.
63.
64.
65. I 66. IV 67. II 68. III

69. radian per sec

70. radian per sec

71. min 72. 9 min

73. .180311 radian per sec
74. 10.768 radians

75. radians per sec

76. 6 radians per sec
77. 1.83333 radians per sec
78. 9.29755 cm per sec

79. 18 cm 80. yd

81. 12 sec

82. radian per sec

83. radian per hr

84. 600 radians per min

85. cm per min
7�

30

�

�

6

3�

32

216�

5
�

9

5

6

5

�

25

3�

32

��.7259, .6878�
�.4385, �.8987�
��.9668, �.2555�

��.8011, .5985�
11�

6

7�

4

7�

6

4�

3
57. ; 58. ;

59. ; 60. ;

Suppose an arc of length s lies on the unit circle , starting at the point 
and terminating at the point . (See Figure 10.) Use a calculator to find the approxi-
mate coordinates for . (Hint: and .)

61. 62. 63. 64.

Concept Check For each value of s, use a calculator to find sin s and cos s and then
use the results to decide in which quadrant an angle of s radians lies.

65. 66. 67. 68.

Use the formula to find the value of the missing variable.

69. radians, sec 70. radians, sec

71. radian, radian per min

72. radians, radian per min

73. radians, sec

74. radian per min, min

Use the formula to find the value of the missing variable.

75. m per sec, m 76. ft per sec, ft

77. m per sec, m

78. cm, radian per sec

The formula can be rewritten as . Using for changes to
. Use the formula to find the value of the missing variable.

79. cm, radians per sec, sec

80. yd, radians per sec, sec

81. cm, cm, radian per sec

82. km, km, sec

Find for each of the following.

83. the hour hand of a clock

84. a line from the center to the edge of a CD revolving 300 times per min

Find v for each of the following.

85. the tip of the minute hand of a clock, if the hand is 7 cm long

�

t � 4r � 2s �
3�

4

� �
�

4
r � 2s � 6�

t � 12� �
2�

5
r � 9

t � 9� �
�

3
r � 6

s � r�ts � r�t
s � r���t� � �t� � �

t

� � .372914r � 24.93215

r � 58.7413v � 107.692

r � 3v � 18r � 5v � 9

v � r�

t � 11.876� � .90674

t � 21.4693� � 3.871142

� �
�

24
� �

3�

8

� �
5�

27
� �

2�

9

t � 10� �
2�

5
t � 8� �

3�

4

� � �
t

s � 79s � 65s � 49s � 51

s � �3.9s � �7.4s � 3.4s � 2.5

y � sin sx � cos s�x, y�
�x, y�

�1, 0�x2 � y2 � 1

cos s �

3

2�3�

2
, 2�	tan s � �1�3�

2
, 2�	

sin s � �
1

2��,
3�

2 	tan s � 
3��,
3�

2 	
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6.2 The Unit Circle and Circular Functions 555

86. 1260 cm per min
87. 1500 m per min
88. 112,880 cm per min
89. 2 sec
91. 15.5 mph 92. 24.62 hr

93. (a) radian

(b) radian per hr

(c) 66,700 mph
94. (a) 2 radians per day; 

radian per hr (b) 0

(c) 12,800 km per day or about
533 km per hr
(d) about 28,000 km per day or
about 1200 km per hr
95. (a) .24 radian per sec
(b) 3.11 cm per sec
96. larger pulley: 

radians per sec; 

smaller pulley: 

radians per sec
125�

48

25�

18

�
�

�

12

�

�

4380

2�

365

�
�

�
�

9

86. a point on the tread of a tire of radius 18 cm, rotating 35 times per min

87. the tip of an airplane propeller 3 m long, rotating 500 times per min (Hint:
m.)

88. a point on the edge of a gyroscope of radius 83 cm, rotating 680 times per min

89. Concept Check If a point moves around the circumference of the unit circle at
the speed of 1 unit per sec, how long will it take for the point to move around the
entire circle?

90. What is the difference between linear velocity and angular velocity?

Solve each problem. See Examples 5 and 6.

91. Speed of a Bicycle The tires of a bicycle have
radius 13 in. and are turning at the rate of 200 revo-
lutions per min. See the figure. How fast is the bicycle
traveling in miles per hour? (Hint: 5280 ft 1 mi.)

92. Hours in a Martian Day Mars
rotates on its axis at the rate of about
.2552 radian per hr. Approximately
how many hours are in a Martian
day? (Source: Wright, John W.
(General Editor), The Universal
Almanac, Andrews and McMeel,
1997.)

93. Angular and Linear Speeds of Earth Earth travels about the sun in an orbit that
is almost circular. Assume that the orbit is a circle with radius 93,000,000 mi. Its
angular and linear speeds are used in designing solar-power facilities.

(a) Assume that a year is 365 days, and find the angle formed by Earth’s movement
in one day.

(b) Give the angular speed in radians per hour.
(c) Find the linear speed of Earth in miles per hour.

94. Angular and Linear Speeds of Earth Earth revolves on its axis once every 24 hr.
Assuming that Earth’s radius is 6400 km, find the following.

(a) angular speed of Earth in radians per day and radians per hour
(b) linear speed at the North Pole or South Pole
(c) linear speed at Quito, Ecuador, a city on the equator
(d) linear speed at Salem, Oregon (halfway from the equator to the North Pole)

95. Speeds of a Pulley and a Belt The pulley shown
has a radius of 12.96 cm. Suppose it takes 18 sec
for 56 cm of belt to go around the pulley.

(a) Find the angular speed of the pulley in radians
per second.

(b) Find the linear speed of the belt in centimeters
per second.

96. Angular Speed of Pulleys The two pulleys in the
figure have radii of 15 cm and 8 cm, respectively.
The larger pulley rotates 25 times in 36 sec. Find the
angular speed of each pulley in radians per second.

�

r � 1.5

13 in.

12.96
cm

15 cm 8 cm
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6.3 Graphs of the Sine and Cosine Functions
Periodic Functions ■ Graph of the Sine Function ■ Graph of the Cosine Function ■ Graphing Techniques,
Amplitude, and Period ■ Translations ■ Combinations of Translations ■ Determining a Trigonometric
Model Using Curve Fitting

Periodic Functions Many things in daily life repeat with a predictable pat-
tern: in warm areas electricity use goes up in summer and down in winter, the
price of fresh fruit goes down in summer and up in winter, and attendance at
amusement parks increases in spring and declines in autumn. Because the sine
and cosine functions repeat their values in a regular pattern, they are periodic
functions. Figure 19 shows a sine graph that represents a normal heartbeat.

Figure 19

Periodic Function

A periodic function is a function f such that

for every real number x in the domain of f, every integer n, and some posi-
tive real number p. The smallest possible positive value of p is the period
of the function.

The circumference of the unit circle is so the smallest value of p for
which the sine and cosine functions repeat is Therefore, the sine and cosine
functions are periodic functions with period 2�.

2�.
2�,

f(x) � f(x � np),

97. Radius of a Spool of Thread A thread is being pulled off a spool at the rate of
59.4 cm per sec. Find the radius of the spool if it makes 152 revolutions per min.

98. Time to Move Along a Railroad Track A railroad track is laid along the arc of a
circle of radius 1800 ft. The circular part of the track subtends a central angle of
40�. How long (in seconds) will it take a point on the front of a train traveling
30 mph to go around this portion of the track?

99. Angular Speed of a Motor Propeller A 90-horsepower outboard motor at full
throttle will rotate its propeller at 5000 revolutions per min. Find the angular speed
of the propeller in radians per second.

100. Linear Speed of a Golf Club The shoulder joint can rotate at about 25 radians per
sec. If a golfer’s arm is straight and the distance from the shoulder to the club head
is 5 ft, estimate the linear speed of the club head from shoulder rotation. (Source:
Cooper, J. and R. Glassow, Kinesiology, Second Edition, C.V. Mosby, 1968.)

556 CHAPTER 6 The Circular Functions and Their Graphs

97. 3.73 cm
98. about 29 sec
99. 523.6 radians per sec
100. 125 ft per sec

Looking Ahead to Calculus
Periodic functions are used throughout

calculus, so you will need to know

their characteristics. One use of these

functions is to describe the location of

a point in the plane using polar coordi-

nates, an alternative to rectangular co-

ordinates. (See Chapter 8).
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x

y

(–1, 0) (1, 0)

(0, –1)

(0, 1)

0

(cos s, sin s)

Unit circle
x2 + y2 = 1

s

Figure 20

Graph of the Sine Function In Section 6.1 we saw that for a real number
s, the point on the unit circle corresponding to s has coordinates (cos s, sin s).
See Figure 20. Trace along the circle to verify the results shown in the table.

To avoid confusion when graphing the sine function, we use x rather than s;
this corresponds to the letters in the xy-coordinate system. Selecting key values
of x and finding the corresponding values of sin x leads to the table in Figure 21.
To obtain the traditional graph in Figure 21, we plot the points from the table,
use symmetry, and join them with a smooth curve. Since is periodic
with period and has domain , the graph continues in the same pattern
in both directions. This graph is called a sine wave or sinusoid.

SINE FUNCTION f(x) � sin x
Domain: Range:

Figure 21

• The graph is continuous over its entire domain,

• Its x-intercepts are of the form n�, where n is an integer.

• Its period is 2�.

• The graph is symmetric with respect to the origin, so the function is an
odd function. For all x in the domain, sin��x� � �sin x.

���, ��.

–2� 2�

–4

4
f (x) = sin x

x

y

2

1

0

–1

–2

f(x) = sin x, –2� ≤  x ≤  2�

–2� 2�–� �–

–

3�
2

3�
2

�
2

�
2

��1, 1����, ��

���, ��2�
y � sin x

x y

0 0

1

� 0

�1

2� 0

3�
2

�
2


3
2

�
3


2
2

�
4

1
2

�
6

As s Increases from sin s cos s

0 to Increases from 0 to 1 Decreases from 1 to 0

to � Decreases from 1 to 0 Decreases from 0 to �1

� to Decreases from 0 to �1 Increases from �1 to 0

to 2� Increases from �1 to 0 Increases from 0 to 13�
2

3�
2

�
2

�
2
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558 CHAPTER 6 The Circular Functions and Their Graphs

Graph of the Cosine Function We find the graph of in much
the same way as the graph of In the table of values shown with
Figure 22 for we use the same values for x as we did for the graph of

Notice that the graph of in Figure 22 has the same shape as
the graph of It is, in fact, the graph of the sine function shifted, or
translated, units to the left. 

COSINE FUNCTION f(x) � cos x
Domain: Range:

Figure 22

• The graph is continuous over its entire domain,

• Its x-intercepts are of the form where n is an integer.

• Its period is 2�.

• The graph is symmetric with respect to the y-axis, so the function is an
even function. For all x in the domain,

Notice that the calculator graphs of in Figure 21 and
in Figure 22 are graphed in the window by 

with and This is called the trig viewing window. (Your
model may use a different “standard” trigonometric viewing window. Consult
your owner’s manual.) ■

Graphing Techniques, Amplitude, and Period The examples that fol-
low show graphs that are “stretched” or “compressed” either vertically, horizon-
tally, or both when compared with the graphs of or y � cos x.y � sin x

Yscl � 1.Xscl � �
2

��4, 4�,��2�, 2��f�x� � cos x
f�x� � sin x

cos��x� � cos x.

�2n � 1��
2 ,

���, ��.

–2� 2�

–4

4
f (x) = cos x

x

y

2

1

0

–1

–2

f(x) = cos x, –2� ≤  x ≤  2�

–2� 2�–� �–– 3�
2

3�
2

�
2

�
2

��1, 1����, ��

�
2

y � sin x.
y � cos xy � sin x.

y � cos x,
y � sin x.

y � cos x

x y

0 1

0
� �1

0
2� 1

3�
2

�
2

1
2

�
3


2
2

�
4


3
2

�
6

Looking Ahead to Calculus
The discussion of the derivative of a

function in calculus shows that for the

sine function, the slope of the tangent

line at any point x is given by cos x.

For example, look at the graph of

and notice that a tangent line 

at will be 

horizontal and thus have slope 0. Now

look at the graph of and see

that for these values, cos x � 0.

y � cos x



5�

2
, . . .


3�

2
,x � 


�

2
,

y � sin x
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–4

–2� 2�

4

The thick graph style repre-
sents the function in Example 1.

x 0 � 2�

0 1 0 �1 0

0 2 0 �2 02 sin x

sin x

3�
2

�
2

EXAMPLE 1 Graphing 

Graph and compare to the graph of 

Solution For a given value of x, the value of y is twice as large as it would be
for as shown in the table of values. The only change in the graph is
the range, which becomes See Figure 23, which includes a graph of

for comparison.

Figure 23

The amplitude of a periodic function is half the difference between the
maximum and minimum values. Thus, for both the basic sine and cosine func-
tions, the amplitude is

Generalizing from Example 1 gives the following.

Amplitude

The graph of or with will have the same
shape as the graph of or respectively, except with range

The amplitude is 

Now try Exercise 7.

No matter what the value of the amplitude, the periods of and
are still Consider We can complete a table of values

for the interval 

Note that one complete cycle occurs in � units, not 2� units. Therefore, the pe-
riod here is �, which equals Now consider Look at the next table.y � sin 4x.2�

2 .

�0, 2��.
y � sin 2x.2�.y � a cos x

y � a sin x

�a�.��� a �, �a � �.
y � cos x,y � sin x

a � 0,y � a cos x,y � a sin x

1

2
�1 � ��1�� �

1

2
�2� � 1.

x

y

2

1

0

–1

–2

y = sin x

Period: 2� y = 2 sin x

–2�

2�

–� �–

–

3�
2

3�
2

�
2

�
2

y � sin x
��2, 2�.

y � sin x,

y � sin x.y � 2 sin x,

y � a sin x

x 0 �

0 1 0 �1 0 1 0 �1 0sin 4x

7�
8

3�
4

5�
8

�
2

3�
8

�
4

�
8

x 0 � 2�

0 1 0 �1 0 1 0 �1 0sin 2x

7�
4

3�
2

5�
4

3�
4

�
2

�
4

TEACHING TIP Students may think
that the period of is 
Explain that a factor of 2 causes
values of the argument to increase
twice as fast, thereby shortening
the length of a period.

4�.y � sin 2x
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560 CHAPTER 6 The Circular Functions and Their Graphs

These values suggest that a complete cycle is achieved in or which is
reasonable since

In general, the graph of a function of the form or for
will have a period different from 2� when To see why this is so,

remember that the values of or will take on all possible values as
bx ranges from 0 to 2�. Therefore, to find the period of either of these functions,
we must solve the three-part inequality

(Section 1.7)

Divide by the positive number b.

Thus, the period is By dividing the interval into four equal parts,
we obtain the values for which or is �1, 0, or 1. These values will
give minimum points, x-intercepts, and maximum points on the graph. Once
these points are determined, we can sketch the graph by joining the points with a
smooth sinusoidal curve. (If a function has then the identities of the next
chapter can be used to rewrite the function so that )

N O T E One method to divide an interval into four equal parts is as follows. 

Step 1 Find the midpoint of the interval by adding the x-values of the endpoints
and dividing by 2.

Step 2 Find the midpoints of the two intervals found in Step 1, using the same
procedure.

EXAMPLE 2 Graphing 

Graph and compare to the graph of 

Solution In this function the coefficient of x is 2, so the period is 
Therefore, the graph will complete one period over the interval 

The endpoints are 0 and �, and the three middle points are

which give the following x-values.

0, �

Left First-quarter Midpoint Third-quarter Right
endpoint point point endpoint

We plot the points from the table of values given on page 559, and join them
with a smooth sinusoidal curve. More of the graph can be sketched by repeating
this cycle, as shown in Figure 24. The amplitude is not changed. The graph of

is included for comparison.y � sin x

3�

4
,

�

2
,

�

4
,

1

4
�0 � ��,

1

2
�0 � ��, and

3

4
�0 � ��,

�0, ��.

2�
2 � �.

y � sin x.y � sin 2x,

y � sin bx

b 	 0.
b � 0,

cos bxsin bx
�0, 2�

b �2�
b .

 0 
 x 

2�

b
.

 0 
 bx 
 2�

cos bxsin bx
b � 1.b 	 0,

y � cos bx,y � sin bx

sin�4 �
�

2 � � sin 2� � 0.

2�
4  units,�

2
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2

0 3�

–2

This screen shows a graph of
the function in Example 3. By

choosing Xscl =        , the 

x-intercepts, maxima, and

minima coincide with tick 
marks on the x-axis.

3�
4

x

y

0–1
–2

1
2

y = cos    x2
3

3�

3�
2

3�
4

9�
4

Figure 25

x 0 3�

0 � 2�

1 0 �1 0 1cos 23 x

3�
2

�
2

2
3 x

9�
4

3�
2

3�
4

Figure 24

Now try Exercise 15.

Generalizing from Example 2 leads to the following result.

Period

For the graph of will resemble that of but with
period Also, the graph of will resemble that of 
but with period 

EXAMPLE 3 Graphing 

Graph over one period.

Solution The period is We divide the interval into four equal 

parts to get the following x-values that yield minimum points, maximum points,
and x-intercepts.

0, 3�

We use these values to obtain a table of key points for one period.

The amplitude is 1 because the maximum value is 1, the minimum value is �1,
and half of We plot these points and join them with a
smooth curve. The graph is shown in Figure 25.

Now try Exercise 13.

N O T E Look at the middle row of the table in Example 3. The method of
dividing the interval into four equal parts will always give the values 0,

�, and 2� for this row, resulting in values of �1, 0, or 1 for the circular
function. These lead to key points on the graph, which can then be easily
sketched.

3�
2 ,�

2 ,
�0, 2�

b �

1 � ��1� is 12 �2� � 1.

9�

4
,

3�

2
,

3�

4
,

�0, 3��
2�

2
3

� 3�.

y � cos 
2

3
x

y � cos bx

2�
b .

y � cos x,y � cos bx2�
b .

y � sin x,y � sin bxb 	 0,

x

y

.5
1

0
–.5
–1

y = sin x

y = sin 2x

2�–� �– –3�
2

3�
2

�
2

�
2
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x

y

0

–1

1

2

–2 y = –2 sin 3x

�
6

�
3

�
2

2�
3

Figure 26

x 0

3x 0 � 2�

sin 3x 0 1 0 �1 0

0 �2 0 2 0�2 sin 3x

3�
2

�
2

2�
3

�
2

�
3

�
6

The method used in Examples 1–3 is summarized as follows.

Guidelines for Sketching Graphs of Sine and Cosine 
Functions

To graph or with follow these steps.

Step 1 Find the period, Start at 0 on the x-axis, and lay off a distance of 

Step 2 Divide the interval into four equal parts. (See the Note preceding
Example 2.)

Step 3 Evaluate the function for each of the five x-values resulting from
Step 2. The points will be maximum points, minimum points, and
x-intercepts. 

Step 4 Plot the points found in Step 3, and join them with a sinusoidal
curve having amplitude 

Step 5 Draw the graph over additional periods, to the right and to the left,
as needed.

The function in Example 4 has both amplitude and period affected by the
values of a and b.

EXAMPLE 4 Graphing 

Graph over one period using the preceding guidelines.

Solution

Step 1 For this function, so the period is The function will be 
graphed over the interval 

Step 2 Divide the interval into four equal parts to get the x-values 0,
and 

Step 3 Make a table of values determined by the x-values from Step 2.

Step 4 Plot the points and and join them
with a sinusoidal curve with amplitude 2. See Figure 26.

Step 5 The graph can be extended by repeating the cycle.

Notice that when a is negative, the graph of is the reflection
across the x-axis of the graph of 

Now try Exercise 19.

y � � a � sin bx.
y � a sin bx

�2�
3 , 0�,��

2 , 2�,��
3 , 0�,��

6 , �2�,�0, 0�,

2�
3 .�

2 ,�
3 ,�

6 ,
�0, 2�

3 �
�0, 2�

3 �.
2�
3 .b � 3,

y � �2 sin 3x

y � a sin bx

�a�.

2�
b .

2�
b .

b 	 0,y � a cos bx,y � a sin bx
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y
y = f(x)

–3 0
x

4

y = f (x – 4)y = f (x + 3)

Horizontal translations
of y = f (x)

Figure 27

y = sin x

0

1
y = sin  x –     (         )

x

–1

y

3
�

�
3

�
6

5�
6

7�
3

4�
3

11�
6

– 2�

�

Figure 28

x

0 � 2�

0 1 0 �1 0sin�x � �
3 �

3�
2

�
2x � �

3

7�
3

11�
6

4�
3

5�
6

�
3

Translations In general, the graph of the function defined by is
translated horizontally when compared to the graph of The translation
is d units to the right if and units to the left if See Figure 27.
With trigonometric functions, a horizontal translation is called a phase shift. In
the function the expression is called the argument.

In Example 5, we give two methods that can be used to sketch the graph of a
circular function involving a phase shift.

EXAMPLE 5 Graphing 

Graph 

Solution Method 1 For the argument to result in all possible values
throughout one period, it must take on all values between 0 and 2�, inclusive.
Therefore, to find an interval of one period, we solve the three-part inequality

Add to each part.

Divide the interval into four equal parts to get the following x-values.

A table of values using these x-values follows.

We join the corresponding points to get the graph shown in Figure 28. The
period is 2�, and the amplitude is 1.

Method 2 We can also graph using a horizontal transla-
tion. The argument indicates that the graph will be translated units to
the right (the phase shift) as compared to the graph of In Figure 28 we
show the graph of as a dashed curve, and the graph of 
as a solid curve. Therefore, to graph a function using this method, first graph the
basic circular function, and then graph the desired function by using the appro-
priate translation.

The graph can be extended through additional periods by repeating this por-
tion of the graph over and over, as necessary.

Now try Exercise 37.

y � sin�x �
�
3 �y � sin x

y � sin x.

�
3x �

�
3

y � sin�x �
�
3 �

�

3
,

5�

6
,

4�

3
,

11�

6
,

7�

3

��
3 , 7�

3 �

�
3 

�

3

 x 


7�

3
.

 0 
 x �
�

3

 2�

x �
�
3

y � sin�x �
�

3 �.

y � sin�x � d �

x � dy � f�x � d�,

d � 0.� d �d 	 0
y � f�x�.

y � f �x � d�
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TEACHING TIP Students may find it
easiest to sketch by
setting up a “temporary axis” at

See Figure 30, for example.y � c.

y � c � f �x�

–2� 2�

7

–7

The function in Example 6 is
shown using the thick graph
style. Notice also the thin
graph style for y = –2 cos 3x.

The graph of a function of the form is translated vertically as
compared with the graph of See Figure 29. The translation is c units up
if and units down if 

Figure 29

EXAMPLE 6 Graphing 

Graph 

Solution The values of y will be 3 greater than the corresponding values of y in
This means that the graph of is the same as

the graph of vertically translated 3 units up. Since the period of
is the key points have x-values

Use these x-values to make a table of points.

The key points are shown on the graph in Figure 30, along with more of the
graph, sketched using the fact that the function is periodic.

Figure 30

Now try Exercise 45.

x
0

5

y = 3 – 2 cos 3x

4

1

c = 3

y

– 2�
3

2�
3

�–� – �
3

�
6

�
3

�
2

0,
�

6
,

�

3
,

�

2
,

2�

3
.

2�
3 ,y � �2 cos 3x

y � �2 cos 3x,
y � 3 � 2 cos 3xy � �2 cos 3x.

y � 3 � 2 cos 3x.

y � c � a cos bx

y

0

y = –5 + f (x)

y = f (x)

y = 3 + f (x)
6

3

–4

Vertical translations of y = f (x)

x

c � 0.� c �c 	 0
y � f�x�.

y � c � f�x�

x 0

cos 3x 1 0 �1 0 1

2 cos 3x 2 0 �2 0 2

1 3 5 3 13 � 2 cos 3x

2�
3

�
2

�
3

�
6
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6.3 Graphs of the Sine and Cosine Functions 565

TEACHING TIP Give several ex-
amples of sinusoidal graphs, and
ask students to determine their
corresponding equations. Point out
that any given graph may have
several different corresponding
equations, all of which are valid.

Many computer graphing
utilities have animation features
that allow you to incrementally
change the values of a, b, c, and d
in the sinusoidal graphs of

and 

This provides an excellent visual
image as to how these parameters
affect sinusoidal graphs.

 y � c � a cos b�x � d �.

 y � c � a sin b�x � d �

Combinations of Translations A function of the form

or

can be graphed according to the following guidelines.

Further Guidelines for Sketching Graphs of Sine and 
Cosine Functions

Method 1 Follow these steps.

Step 1 Find an interval whose length is one period by solving the three-
part inequality 

Step 2 Divide the interval into four equal parts.

Step 3 Evaluate the function for each of the five x-values resulting from
Step 2. The points will be maximum points, minimum points, and
points that intersect the line (“middle” points of the wave).

Step 4 Plot the points found in Step 3, and join them with a sinusoidal
curve having amplitude 

Step 5 Draw the graph over additional periods, to the right and to the left,
as needed.

Method 2 First graph the basic circular function. The amplitude of the
function is and the period is Then use translations to graph the de-
sired function. The vertical translation is c units up if and units
down if The horizontal translation (phase shift) is d units to the right
if and units to the left if 

EXAMPLE 7 Graphing 

Graph 

Solution We use Method 1. First write the expression in the form
by rewriting as 

Rewrite as 

Step 1 Find an interval whose length is one period.

Divide by 4.

Subtract 

Step 2 Divide the interval into four equal parts to get the x-values

�
�

4
, �

�

8
, 0,

�

8
,

�

4
.

��
�
4 , �

4 �

�
4 . �

�

4

 x 


�

4

 0 
 x �
�

4



�

2

 0 
 4�x �
�

4 � 
 2�

4�x �
�
4 �.4x � �y � �1 � 2 sin�4�x �

�

4 �	.

4�x �
�
4 �:4x � �c � a sin b�x � d�

y � �1 � 2 sin�4x � ��.

y � c � a sin b�x � d �

d � 0.� d �d 	 0
c � 0.

� c �c 	 0

2�
b .� a �,

� a �.

y � c

0 
 b�x � d� 
 2�.

2�
b

b 	 0,y � c � a cos b�x � d�,y � c � a sin b�x � d�
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566 CHAPTER 6 The Circular Functions and Their Graphs

x 0

0

0 � 2�

0 1 0 �1 0

0 2 0 �2 0

�1 1 �1 �3 �1�1 � 2 sin(4x � �)

2 sin 4�x � �
4 �

sin 4�x � �
4 �

3�
2

�
24�x � �

4 �

�
2

3�
8

�
4

�
8x � �

4

�
4

�
8�

�
8�

�
4

Step 3 Make a table of values.

Steps 4 and 5 Plot the points found in the table and join them with a sinu-
soidal curve. Figure 31 shows the graph, extended to the right and left
to include two full periods.

Now try Exercise 49.

Determining a Trigonometric Model Using Curve Fitting A sinu-
soidal function is often a good approximation of a set of real data points.

EXAMPLE 8 Modeling Temperature with a Sine Function

The maximum average monthly temperature in New Orleans is 82°F and the
minimum is 54°F. The table shows the average monthly temperatures. The scat-
ter diagram for a 2-year interval in Figure 32 strongly suggests that the tempera-
tures can be modeled with a sine curve.

(a) Using only the maximum and minimum temperatures, determine a function
of the form where a, b, c, and d are constants,
that models the average monthly temperature in New Orleans. Let x repre-
sent the month, with January corresponding to x � 1.

f�x� � a sin�b�x � d�� � c,

c = –1

y

x
0

1

–2

–3

y = –1 + 2 sin(4x + �)

–1

– �
4

– �
2

�
4

�
2

�
8

3�
8

– 3�
8

�
8

–

Figure 31

85

50
1 25

Figure 32

Month �F Month �F

Jan 54 July 82

Feb 55 Aug 81

Mar 61 Sept 77

Apr 69 Oct 71

May 73 Nov 59

June 79 Dec 55

Source: Miller, A., J. Thompson, and R.
Peterson, Elements of Meteorology, 4th
Edition, Charles E. Merrill Publishing
Co., 1983.
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6.3 Graphs of the Sine and Cosine Functions 567

(b) On the same coordinate axes, graph f for a two-year period together with the
actual data values found in the table.

(c) Use the sine regression feature of a graphing calculator to determine a sec-
ond model for these data.

Solution

(a) We use the maximum and minimum average monthly temperatures to find
the amplitude a.

The average of the maximum and minimum temperatures is a good choice
for c. The average is

Since the coldest month is January, when and the hottest month is
July, when we should choose d to be about 4. We experiment with
values just greater than 4 to find d. Trial and error using a calculator leads to

Since temperatures repeat every 12 months, b is Thus,

(b) Figure 33 shows the data points and the graph of for
comparison. The horizontal translation of the model is fairly obvious here.

y � 14 sin �6 x � 68

f�x� � a sin�b�x � d�� � c � 14 sin� �

6
�x � 4.2�	 � 68.

2�
12 � �

6 .d � 4.2.

x � 7,
x � 1,

82 � 54

2
� 68.

a �
82 � 54

2
� 14

(a) (b)

Figure 33 Figure 34

90

50
1 25

Values are rounded to the
nearest hundredth.

90

50
1 25

(c) We used the given data for a two-year period to produce the model de-
scribed in Figure 34(a). Figure 34(b) shows its graph along with the data
points.

Now try Exercise 73.
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568 CHAPTER 6 The Circular Functions and Their Graphs

Concept Check In Exercises 1–4, match each function with its graph.

1. A. B.

2.

3. C. D.

4.

Graph each function over the interval . Give the amplitude. See Example 1.

5. 6. 7.

8. 9. 10.

11. 12.

Graph each function over a two-period interval. Give the period and amplitude. See
Examples 2–4.

13. 14. 15.

16. 17. 18.

19. 20.

Concept Check In Exercises 21 and 22, give the equation of a sine function having the
given graph.

21.

22. .5

–.5

–6 6

5

–5

–20 20

y � �5 cos 2xy � �2 cos 3x

y � 3 sin 2xy � 2 sin 
1

4
xy � cos 

3

4
x

y � cos 2xy � sin 
2

3
xy � sin 

1

2
x

y � �3 cos xy � �2 sin x

y � �sin xy � �cos xy �
3

4
 cos x

y �
2

3
 sin xy � 3 sin xy � 2 cos x

��2�, 2��

y � 2 cos x
x

y

–1
0

1

2��
x

y

–1

1

0 2��

y � sin 2x

y � �cos x x

y

–2

2

0 2��

x

y

–1

1

0 ��
2

y � �sin x

1. D 2. C 3. A 4. B
5. 2 6. 3

7. 8.

9. 1 10. 1

11. 2 12. 3

13. 4 ; 1 14. 3 ; 1

15. ; 1 16. ; 1

17. 8 ; 2 18. ; 3

0 x

y

3
y = 3 sin 2x

–3

–�

�

�
2

�
2

–
x

y

2
0–4�–8� 8�4�

y = 2 sin    x1
4

��

x

y

1
0

y = cos    x
4�
3

4�
3

8�
3

8�
3

–

–

3
4

x

y

1

y = cos 2x

–1
0–� �

�
2

�
2

–

8�

3
�

x

y

1
0–3� 3�3�

2
3�
2

–

y = sin    x2
3

x

y

1

–10–2�–4�

2�

4�

y = sin    x1
2

��

0 x

y

–3

y = –3 cos x
3

–2�

–� �

2�

0 x

y

–2

y = –2 sin x

2–2� –�

� 2�

x

y

1
–1

y = –sin x

–2�

–�

� 2�

0 x

y

1

y = –cos x

–2�

–� �

2�

0 x

y

1
–1

y =     cos x3
4

–2�

–�

� 2�

0 x

y

–1

y =    sin x

1

2
3

–2�

–� �

2�

3

4

2

3

0 x

y

3

–3

y = 3 sin x

–2� –� �

2�

0 x

y

2

–2

y = 2 cos x

–2�

–� �

2�

6.3 Exercises
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6.3 Graphs of the Sine and Cosine Functions 569

Concept Check Match each function in Column I with the appropriate description in
Column II.

I II

23. A. amplitude , period , phase shift

24. B. amplitude , period , phase shift

25. C. amplitude , period , phase shift

26. D. amplitude , period , phase shift

Concept Check Match each function with its graph.

27.
A. B.

28.

29. C. D.

30.

Find the amplitude, the period, any vertical translation, and any phase shift of the graph
of each function. See Examples 5–7.

31. 32.

33. 34.

35. 36.

Graph each function over a two-period interval. See Example 5.

37. 38.

39. 40.

Graph each function over a one-period interval.

41. 42.

43. 44.

Graph each function over a two-period interval. See Example 6.

45. 46. y � 1 �
2

3
 sin 

3

4
xy � �1 � 2 cos 5x

y � �
1

4
 sin� 3

4
x �

�

8 �y �
1

2
 cos� 1

2
x �

�

4 �
y � 3 cos�4x � ��y � �4 sin�2x � ��

y � 3 sin�x �
3�

2 �y � 2 cos�x �
�

3 �
y � cos�x �

�

3 �y � sin�x �
�

4 �

y � �1 �
1

2
 cos�2x � 3��y � 2 � sin�3x �

�

5 �
y �

1

2
 sin� x

2
� ��y � 4 cos� x

2
�

�

2 �
y �

2

3
 sin�x �

�

2 �y � 2 sin�x � ��

y � �1 � sin x
x

y

–1
0

1

�
4

5�
4

9�
4

y

0

1

–1

x

– �
4

3�
4

7�
4

y � 1 � sin x

y � sin�x �
�

4 � x

y

0
–1

1

2

2��

x

y

0
–1

–2

1

2��

y � sin�x �
�

4 �

�
4

3
�

2�

3
� 2y � 2 sin�4x � 3�

�
2

3
�

2�

3
� 4y � 4 sin�3x � 2�

� 2� �� 3y � 2 sin�3x � 4�

�
3

4
�

�

2
� 2y � 3 sin�2x � 4�

19. ; 2 20. ; 5

There are other correct answers in
Exercises 21 and 22.

21.

22.

23. B 24. D 25. C 26. A
27. D 28. C 29. B 30. A
31. 2; 2 ; none; to the right

32. ; 2 ; none; to the left

33. 4; 4 ; none; to the left

34. ; 4 ; none; 2 to the left

35. 1; ; up 2; to the right

36. ; ; down 1; to the right

37. 38.

39. 40.

41. 42.

43. y

–1

1

0
x

y =      cos (  x –    )�
4

1
2

1
2

5�
2

9�
2

�
2

y

–3

3

0 x

y = 3 cos (4x + �)

�
4

�
4

–

y

–4
y = –4 sin (2x – �)

4

0 x
3�
2

�
2

�

x

y

3

–3
0

y = 3 sin (x –      )3�
2

7�
2

3�
2

11�
2

x

y

–2

2

0

y = 2 cos (x –    )�
3

7�
3

4�
3

13�
3

10�
3

�
3

x

y

–1

1

0

y = cos (x –    )�
3

7�
3

13�
3

�
3

x

y

1

0
–1

y = sin (x –     )�
4

9�
4

13�
4

5�
4

17�
4

�
4

3�

2
�

1

2

�

15

2�

3

��
1

2

��

�

2
�

2

3

��

y �
1

4
 sin 

�

2
x

y � 4 sin 
1

2
x

0 x

y

5
y = –5 cos 2x

–5

�–� �
2

�
2

–0
x

y

1

y = –2 cos 3x2

–2

2�
3

2�
3

– – �
3

�
3

�
2�

3
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47. 48.

Graph each function over a one-period interval. See Example 7.

49. 50.

51. 52.

Concept Check In Exercises 53 and 54, find the equation of a sine function having the
given graph.

53. Note: .

54. (Note: .)

(Modeling) Solve each problem.

55. Average Annual Temperature Scientists believe that the average annual tempera-
ture in a given location is periodic. The average temperature at a given place during
a given season fluctuates as time goes on, from colder to warmer, and back to cold-
er. The graph shows an idealized description of the temperature (in �F) for the last
few thousand years of a location at the same latitude as Anchorage, Alaska.

(a) Find the highest and lowest temperatures recorded.
(b) Use these two numbers to find the amplitude.
(c) Find the period of the function.
(d) What is the trend of the temperature now?

Years ago

Average Annual Temperature (Idealized)

15
0,

00
0

10
0,

00
0

50
,0

00

80°

65° °F

50°

5

–5

–3 3

Yscl � �

5

–5

–5 5

�Xscl � �
4�

y � �
5

2
� cos 3�x �

�

6 �y �
1

2
� sin 2�x �

�

4 �
y � 4 � 3 cos�x � ��y � �3 � 2 sin�x �

�

2 �

y � �3 � 3 sin 
1

2
xy � 1 � 2 cos 

1

2
x

44.

45.

46.

47.

48.

49. 50.

51.

52.

There are other correct answers in
Exercises 53 and 54.

53.

54.
55. (a) 80�; 50� (b) 15�
(c) about 35,000 yr (d) downward

y � � sin ��x � .5�

y � 3 sin 2�x �
�

4 �

x

y

–4

0

y = –     + cos 3(x –    )�
6

5
2

5
2

–

5�
6

�
6

0
x

y

1
2

–2

–� ��
2

�
2

–

y =      + sin 2(x +    )�
4

1
2

y

x

7

0
1

y = 4 – 3 cos (x – �)

4

� 2� 3�

x

y

–1

0

–5

–3

9�
2

�
2

�
2

–

y = –3 + 2 sin (x +    )�
2

x

y

–6

–3
0

–4� –�

�

4�

y = –3 + 3 sin   x1
2

x

y

3
1–4� 4�

–3� 3�–� �

y = 1 – 2 cos   x1
2

0 x

y

1

y = 1 –     sin   x2
3

3
4

8�
3

4�
3

4�
3

8�
3

– –

0 x

y

1

y = –1 – 2 cos 5x

–3

2�
5

2�
5

–

y

–1

1

0 x

y = –     sin (  x +    )�
8

3
4

1
4

5�
2

7�
6

�
6

–
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56. Blood Pressure Variation The graph gives the variation in blood pressure for a
typical person. Systolic and diastolic pressures are the upper and lower limits of the
periodic changes in pressure that produce the pulse. The length of time between
peaks is called the period of the pulse.

(a) Find the amplitude of the graph.
(b) Find the pulse rate (the number of pulse beats in 1 min) for this person.

57. Activity of a Nocturnal Animal Many of the activities of living organisms are
periodic. For example, the graph below shows the time that a certain nocturnal ani-
mal begins its evening activity.

(a) Find the amplitude of this graph. (b) Find the period.

58. Position of a Moving Arm The figure shows schematic diagrams of a rhythmically
moving arm. The upper arm RO rotates back and forth about the point R; the position
of the arm is measured by the angle y between the actual position and the downward
vertical position. (Source: De Sapio, Rodolfo, Calculus for the Life Sciences.
Copyright © 1978 by W. H. Freeman and Company. Reprinted by permission.)

(a) Find an equation of the form for the graph shown.
(b) How long does it take for a complete movement of the arm?

y � a sin kt

  3  _
2

y

t

A
ng

le
 o

f 
ar

m
, y

Time, in seconds, t

This graph shows the relationship 
between angle y and time t in seconds.

0

  1  _
3

–

  1  _
3

y

O

R

y

R

O

R R R R

O O O O

R

O

y

Apr Jun Aug Oct Dec Feb Apr

6:30
7:00
7:30
8:00

4:00
4:30
5:00
5:30

T
im

e 
P.

M
.

Month

Activity of a Nocturnal Animal

Time (in seconds)

Blood Pressure Variation

Pr
es

su
re

 (
in

 m
m

 m
er

cu
ry

)

.8 1.6

Systolic
pressure

Diastolic
pressure

80

40

0

120

Period =.8 sec

6.3 Graphs of the Sine and Cosine Functions 571

56. (a) 20 (b) 75
57. (a) about 2 hr (b) 1 yr

58. (a) (b) sec
3

2
y �

1

3
 sin 

4�t

3
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572 CHAPTER 6 The Circular Functions and Their Graphs

Tides for Kahului Harbor The chart shows the tides for Kahului Harbor (on the island
of Maui, Hawaii). To identify high and low tides and times for other Maui areas, the fol-
lowing adjustments must be made.

59. 24 hr

60. approximately 

61. approximately 6:00 P.M.;
approximately .2 ft
62. approximately 7:19 P.M.;
approximately 0 ft
63. approximately 2:00 A.M.;
approximately 2.6 ft
64. approximately 3:18 A.M.;
approximately 2.4 ft

65. 1; 240� or 

66. 1; 120� or 

67. (a) 5; (b) 60

(c) 5; 1.545; �4.045; �4.045;
1.545 (d)

0
t

E

–5

5

.0167 .033

.025.0083

E = 5 cos 120� t

1

60

2�

3

4�

3

2.6 � .2

2
� 1.2

Hana: High, �40 min, �.1 ft;
Low, �18 min, �.2 ft

Makena: High, �1:21, �.5 ft;
Low, �1:09, �.2 ft

Maalaea: High, �1:52, �.1 ft; 
Low, �1:19, �.2 ft

Lahaina: High, �1:18, �.2 ft; 
Low, �1:01, �.1 ft

Use the graph to work Exercises 59–64.

59. The graph is an example of a periodic function. What is the period (in hours)?

60. What is the amplitude?

61. At what time on January 20 was low tide at Kahului? What was the height?

62. Repeat Exercise 61 for Maalaea.

63. At what time on January 22 was high tide at Kahului? What was the height?

64. Repeat Exercise 63 for Lahaina.

Musical Sound Waves Pure sounds produce single sine waves on an oscilloscope.
Find the amplitude and period of each sine wave graph in Exercises 65 and 66. On the
vertical scale, each square represents .5; on the horizontal scale, each square represents
30� or .

65. 66.

(Modeling) Solve each problem.

67. Voltage of an Electrical Circuit The voltage E in an electrical circuit is modeled by

,

where t is time measured in seconds.

(a) Find the amplitude and the period.
(b) How many cycles are completed in 1 sec? (The number of cycles (periods)
completed in 1 sec is the frequency of the function.)
(c) Find E when , .03, .06, .09, .12.
(d) Graph E for .0 
 t 


1
30

t � 0

E � 5 cos 120�t

�
6

JANUARY

19 20 21 22
6

am
Noon 6

pm
6

am
Noon 6

pm
6

am
Noon 6

pm
6

am
Noon 6

pm

0

1

2

3

0

1

2

3

Fe
et

Fe
et

Source: Maui News. Original chart prepared by
Edward K. Noda and Associates.

LIALMC06_0321227638.QXP  2/26/04  10:42 AM  Page 572
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68. Voltage of an Electrical Circuit For another electrical circuit, the voltage E is
modeled by

,

where t is time measured in seconds.

(a) Find the amplitude and the period.
(b) Find the frequency. See Exercise 67(b).
(c) Find E when , .04, .08, .12, .14.
(d) Graph one period of E.

69. Atmospheric Carbon Dioxide At
Mauna Loa, Hawaii, atmospheric carbon
dioxide levels in parts per million (ppm)
have been measured regularly since 1958.
The function defined by

can be used to model these levels, where
x is in years and corresponds to
1960. (Source: Nilsson, A., Greenhouse
Earth, John Wiley & Sons, 1992.)

(a) Graph L in the window by .
(b) When do the seasonal maximum and minimum carbon dioxide levels occur?
(c) L is the sum of a quadratic function and a sine function. What is the significance

of each of these functions? Discuss what physical phenomena may be responsible
for each function.

70. Atmospheric Carbon Dioxide Refer to Exercise 69. The carbon dioxide content in
the atmosphere at Barrow, Alaska, in parts per million (ppm) can be modeled using
the function defined by

,

where corresponds to 1970. (Source: Zeilik, M. and S. Gregory, Introductory
Astronomy and Astrophysics, Brooks/Cole, 1998.)

(a) Graph C in the window by .
(b) Discuss possible reasons why the amplitude of the oscillations in the graph of C

is larger than the amplitude of the oscillations in the graph of L in Exercise 69,
which models Hawaii.

(c) Define a new function C that is valid if x represents the actual year, where
.

71. Temperature in Fairbanks The temperature in Fairbanks is modeled by

,

where is the temperature in degrees Fahrenheit on day x, with corre-
sponding to January 1 and corresponding to December 31. Use a calculator
to estimate the temperature on the following days. (Source: Lando, B. and C. Lando,
“Is the Graph of Temperature Variation a Sine Curve?”, The Mathematics Teacher,
70, September 1977.)

(a) March 1 (day 60) (b) April 1 (day 91) (c) Day 150
(d) June 15 (e) September 1 (f) October 31

72. Fluctuation in the Solar Constant The solar constant S is the amount of energy
per unit area that reaches Earth’s atmosphere from the sun. It is equal to 1367 watts

x � 365
x � 1T�x�

T�x� � 37 sin� 2�

365
�x � 101�	 � 25

1970 
 x 
 1995

�320, 380��5, 25�

x � 0

C�x� � .04x2 � .6x � 330 � 7.5 sin�2�x�

�325, 365��15, 35�

x � 0

L�x� � .022x2 � .55x � 316 � 3.5 sin�2�x�

t � .02

E � 3.8 cos 40�t

68. (a) 3.8; (b) 20

(c) �3.074; 1.174; �3.074;
�3.074; 1.174
(d)

69. (a)

(b) maximums: , , 

; minimums: , , 

70. (a)

(c)

71. (a) 1� (b) 19� (c) 53� (d) 58�
(e) 48� (f) 12�

7.5 sin�2��x � 1970��
.6�x � 1970� � 330 �

C�x� � .04�x � 1970�2 �

380

320
5 25

C(x) = .04x2 + .6x + 330
           + 7.5 sin(2�x)

11

4
, . . .

7

4
x �

3

4

9

4
, . . .

5

4
x �

1

4

365

325
15 35

L(x) = .022x2 + .55x + 316
           + 3.5 sin(2�x)

0 t

E

–3.8

3.8

.025 .05

E = 3.8 cos 40� t

1

20

9

9
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45
1 25

f(x) = 19.5 cos[    (x – 7.2)] + 70.5�
6

574 CHAPTER 6 The Circular Functions and Their Graphs

per square meter but varies slightly throughout the seasons. This fluctuation in S
can be calculated using the formula

.

In this formula, N is the day number covering a four-year period, where cor-
responds to January 1 of a leap year and corresponds to December 31 of
the fourth year. (Source: Winter, C., R. Sizmann, and Vant-Hunt (Editors), Solar
Power Plants, Springer-Verlag, 1991.)

(a) Calculate for , which is the spring equinox in the first year.
(b) Calculate for , which is the summer solstice in the fourth year.
(c) What is the maximum value of ?
(d) Find a value for N where is equal to 0.

(Modeling) Solve each problem. See Example 8.

73. Average Monthly Temperature The average
monthly temperature (in �F) in Vancouver,
Canada, is shown in the table.

(a) Plot the average monthly temperature
over a two-year period letting 
correspond to the month of January
during the first year. Do the data seem 
to indicate a translated sine graph?

(b) The highest average monthly temperature
is 64�F in July, and the lowest average
monthly temperature is 36�F in January.
Their average is 50�F. Graph the data
together with the line . What 
does this line represent with regard to
temperature in Vancouver?

(c) Approximate the amplitude, period, and phase shift of the translated sine wave.
(d) Determine a function of the form , where a, b, c, and

d are constants, that models the data.
(e) Graph f together with the data on the same coordinate axes. How well does f

model the given data?
(f) Use the sine regression capability of a graphing calculator to find the equation of

a sine curve that fits these data.

74. Average Monthly Temperature The aver-
age monthly temperature (in �F) in Phoenix,
Arizona, is shown in the table.

(a) Predict the average yearly temperature
and compare it to the actual value of 70�F.

(b) Plot the average monthly temperature
over a two-year period by letting 
correspond to January of the first year.

(c) Determine a function of the form 
, where a, b, c, and d

are constants, that models the data.
(d) Graph f together with the data on the

same coordinate axes. How well does f
model the data?

(e) Use the sine regression capability of a
graphing calculator to find the equation of
a sine curve that fits these data.

a cos b�x � d� � c
f �x� �

x � 1

f �x� � a sin b�x � d� � c

y � 50

x � 1

�S
�S

N � 1268�S
N � 80�S

N � 1461
N � 1

�S � .034S sin�2��82.5 � N�
365.25 	

�S72. (a) 1.998 watts per 
(b) �46.461 watts per 
(c) 46.478 watts per 
(d) Answers may vary. A possible
answer is . (Since N
represents a day number, which
should be a natural number, we
might interpret day 82.5 as noon
on the 82nd day.)
Answer graphs for Exercises 73(a),
(b), and (e) are included on page
A-38 of the answer section at the
back of the text.
73. (a) yes (b) It represents the
average yearly temperature.
(c) 14; 12; 4.2
(d)

(e) The function gives an excellent
model for the given data.
(f)

74. (a) 70.4�
(b) See the graph in part (d).
(c)

(d) The function gives an
excellent model for the data.

(e)

TI-83 Plus fixed to the
nearest hundredth.

19.5 cos� �

6
�x � 7.2�	 � 70.5

f �x� �

TI-83 Plus fixed to the
nearest hundredth.

14 sin� �

6
�x � 4.2�	 � 50

f �x� �

N � 82.5

m2
m2
m2

Month �F Month �F

Jan 36 July 64

Feb 39 Aug 63

Mar 43 Sept 57

Apr 48 Oct 50

May 55 Nov 43

June 59 Dec 39

Source: Miller, A. and J. Thompson,
Elements of Meteorology, 4th Edition,
Charles E. Merrill Publishing Co., 1983.

Month �F Month �F

Jan 51 July 90

Feb 55 Aug 90

Mar 63 Sept 84

Apr 67 Oct 71

May 77 Nov 59

June 86 Dec 52

Source: Miller, A. and J. Thompson,
Elements of Meteorology, 4th Edition,
Charles E. Merrill Publishing Co., 1983.
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6.4 Graphs of the Other Circular Functions 575

Graphs of the Cosecant and Secant Functions Since cosecant values
are reciprocals of the corresponding sine values, the period of the function

is 2�, the same as for When the value of csc x is
also 1, and when then Also, if then

(Verify these statements.) As approaches 0, approaches
0, and gets larger and larger. The graph of approaches the ver-
tical line but never touches it, so the line is a vertical asymptote. In
fact, the lines where n is any integer, are all vertical asymptotes.

Using this information and plotting a few points shows that the graph takes
the shape of the solid curve shown in Figure 35. To show how the two graphs are
related, the graph of is shown as a dashed curve.

Figure 35 Figure 36

A similar analysis for the secant leads to the solid curve shown in Figure 36.
The dashed curve, is shown so that the relationship between these
two reciprocal functions can be seen.

Typically, calculators do not have keys for the cosecant and secant func-
tions. To graph with a graphing calculator, use the fact that

The graphs of and are shown in Figure 37. The calcula-
tor is in split screen and connected modes. Similarly, the secant function is
graphed by using the identity

as shown in Figure 38.
Using dot mode for graphing will eliminate the vertical lines that appear in

Figures 37 and 38. While they suggest asymptotes and are sometimes called
pseudo-asymptotes, they are not actually parts of the graphs. See Figure 39 on
the next page, for example. ■

sec x �
1

cos x
,

Y2 � csc XY1 � sin X

csc x �
1

sin x
.

y � csc x

y � cos x,

0

y = cos x

y

y = sec x   Period: 2� 

–2� 2�

–� �

1

–1

x

–1

x
0

1
y = sin x

y = csc x   Period: 2� 

y

–2� 2�–� �

y � sin x

x � n�,
x � 0x � 0

y � csc x� csc x �
� sin x �� x �csc x � �1.

�1 � sin x � 0,csc x 	 1.0 � sin x � 1,
sin x � 1,y � sin x.y � csc x

4

2�–2�

Y1 = sin X Y2 = csc X

Trig window; connected mode

Figure 37

4

2�–2�

Y1 = cos X Y2 = sec X

Trig window; connected mode

Figure 38
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x y

0 undefined
2

1

� undefined

undefined2�

�13�
2

2
3
3

2�
3

�
2

2
3
3

�
3

�
6

x y

undefined

0 1

undefined�
2


2�
4


2�
�
4

�
�
2

COSECANT FUNCTION f(x) � csc x
Domain: where n is an integer Range:

Figure 39

• The graph is discontinuous at values of x of the form and has ver-
tical asymptotes at these values.

• There are no x-intercepts.

• Its period is 2�.

• Its graph has no amplitude, since there are no maximum or minimum values.

• The graph is symmetric with respect to the origin, so the function is an
odd function. For all x in the domain,

SECANT FUNCTION f(x) � sec x
Domain: Range:

where n is an integer

Figure 40

(continued)

–2�

–4

4

2�

Dot mode

f (x) = sec x

x
0

y

–1

1

f(x) = sec x

–2� 2�–� �

�
���, �1� � �1,���x � x � �2n � 1��

2 ,

csc��x� � �csc x.

x � n�

–2�

–4

4

2�

Dot mode

f (x) = csc x

–1
0

1

y

f (x) = csc x

x
–2� 2�–� �

���, �1� � �1,����x � x � n�,
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6.4 Graphs of the Other Circular Functions 577

• The graph is discontinuous at values of x of the form and
has vertical asymptotes at these values.

• There are no x-intercepts.

• Its period is 2�.

• Its graph has no amplitude, since there are no maximum or minimum values.

• The graph is symmetric with respect to the y-axis, so the function is an
even function. For all x in the domain,

In the previous section, we gave guidelines for sketching graphs of sine and
cosine functions. We now present similar guidelines for graphing cosecant and
secant functions.

Guidelines for Sketching Graphs of Cosecant and 
Secant Functions

To graph or with follow these steps.

Step 1 Graph the corresponding reciprocal function as a guide, using a
dashed curve.

Step 2 Sketch the vertical asymptotes. They will have equations of the
form were k is an x-intercept of the graph of the guide
function.

Step 3 Sketch the graph of the desired function by drawing the typical
U-shaped branches between the adjacent asymptotes. The branches
will be above the graph of the guide function when the guide func-
tion values are positive and below the graph of the guide function
when the guide function values are negative. The graph will re-
semble those in Figures 39 and 40 in the function boxes on the pre-
vious page.

Like graphs of the sine and cosine functions, graphs of the secant and cose-
cant functions may be translated vertically and horizontally. The period of both
basic functions is 2�.

x � k,

b 	 0,y � a sec bx,y � a csc bx

sec��x� � sec x.

x � �2n � 1��
2

To Graph Use as a Guide

y � a cos bxy � a sec bx

y � a sin bxy � a csc bx
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(a) (b)

Figure 41

–2

x

y

0

2

y = 2 sec    x

–4� –3� –2� 2� 3� 4�–� �

1
2

–2

y

0

2

x

y = 2 cos    x
is used as a guide.

1
2

–4� –3� –2� 2� 3� 4�–� �

578 CHAPTER 6 The Circular Functions and Their Graphs

EXAMPLE 1 Graphing 

Graph 

Solution

Step 1 This function involves the secant, so the corresponding reciprocal
function will involve the cosine. The guide function to graph is

Using the guidelines of Section 6.3, we find that this guide function
has amplitude 2 and one period of the graph lies along the interval that
satisfies the inequality

(Section 1.7)

Dividing this interval into four equal parts gives the key points

which are joined with a smooth dashed curve to indicate that this
graph is only a guide. An additional period is graphed as seen in
Figure 41(a).

�0, 2�, ��, 0�, �2�, �2�, �3�, 0�, �4�, 2�,

0 

1

2
x 
 2�, or �0, 4��.

y � 2 cos 
1

2
x.

y � 2 sec 
1

2
x.

y � a sec bx

Step 2 Sketch the vertical asymptotes. These occur at x-values for which the
guide function equals 0, such as

See Figure 41(a).

Step 3 Sketch the graph of by drawing the typical U-shaped
branches, approaching the asymptotes. See Figure 41(b).

Now try Exercise 7.

y � 2 sec 12 x

x � �3�, x � ��, x � �, x � 3�.

6

–6

–4� 4�

Dot mode

This is a calculator graph of
the function in Example 1.
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EXAMPLE 2 Graphing 

Graph 

Solution

Step 1 Use the guidelines of Section 6.3 to graph the corresponding recipro-
cal function

shown as a red dashed curve in Figure 42.

Step 2 Sketch the vertical asymptotes through the x-intercepts of the graph of
These have the form where n is an

integer. See the black dashed lines in Figure 42.

Step 3 Sketch the graph of by drawing the typical
U-shaped branches between adjacent asymptotes. See the solid blue
graph in Figure 42.

Figure 42

Now try Exercise 9.

Graphs of the Tangent and Cotangent Functions Unlike the four
functions whose graphs we studied previously, the tangent function has period 
�. Because tangent values are 0 when sine values are 0, and un-
defined when cosine values are 0. As x-values go from to tangent values
go from to and increase throughout the interval. Those same values are 
repeated as x goes from to to and so on. The graph of from 

to is shown in Figure 43.

Figure 43 

–2

x

y

0

2

y = tan x Period: �

–� �

– �
4

3�
2

�
2

�
4

– �
2

3�
2��

y � tan x5�
2 ,3�

2
3�
2 ,�

2

���

�
2 ,�

�
2

tan x � sin x
cos x ,

x

y

0

1

2

–1

y =     sin(x –    )3
2

�
2

y =     csc(x –    )3
2

�
2

–� � 2�– 3�
2

3�
2

5�
2

�
2

– �
2

y � 3
2 csc�x �

�
2 �

x � �2n � 1��
2 ,y � 3

2 sin�x �
�
2 �.

y �
3

2
 sin�x �

�

2 �,

y �
3

2
 csc�x �

�

2 �.

y � a csc�x � d �

4

–4

2�–2�

Dot mode

This is a calculator graph of
the function in Example 2.
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The cotangent function also has period �. Cotangent values are 0 when co-
sine values are 0, and undefined when sine values are 0. (Verify this also.) As
x-values go from 0 to �, cotangent values go from to and decrease
throughout the interval. Those same values are repeated as x goes from � to 2�,
2� to 3�, and so on. The graph of from to � is shown in Figure 44.

TANGENT FUNCTION f(x) � tan x
Domain: where n is an integer Range:

Figure 45

• The graph is discontinuous at values of x of the form and
has vertical asymptotes at these values.

• Its x-intercepts are of the form 

• Its period is �.

• Its graph has no amplitude, since there are no minimum or maximum values.

• The graph is symmetric with respect to the origin, so the function is an
odd function. For all x in the domain,

COTANGENT FUNCTION f(x) � cot x
Domain: where n is an integer Range:

Figure 46

(continued)

–2�

–4

4

2�

Dot mode

f (x) = cot x

f(x) = cot x, 0 < x < �

0

1

–1

y

x
��

4
�
2

���, ����x � x � n�,

tan��x� � �tan x.

x � n�.

x � �2n � 1��
2

–2�

–4

4

2�

Dot mode

f (x) = tan x

–2

y

0

1

2

f(x) = tan x, –     < x <

x

2
�

2
�

– �
2

– �
4

�
4

�
2

���, ����x � x � �2n � 1��
2 ,

��y � cot x

���

x y

undefined

�1
0 0

1

undefined�
2

�
4

�
�
4

�
�
2

x y

0 undefined
1
0

�1
� undefined

3�
4

�
2

�
4

0

1

x

y

y = cot x Period: �

–� �– �
2

�
2

Figure 44
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TEACHING TIP Emphasize to stu-
dents that the period of the tan-
gent and cotangent functions is

not 
2�

b
.

�

b
,

• The graph is discontinuous at values of x of the form and has ver-
tical asymptotes at these values.

• Its x-intercepts are of the form 

• Its period is �.

• Its graph has no amplitude, since there are no minimum or maximum
values.

• The graph is symmetric with respect to the origin, so the function is an
odd function. For all x in the domain,

The tangent function can be graphed directly with a graphing calculator,
using the tangent key. To graph the cotangent function, however, we must use
one of the identities or since graphing calculators gen-
erally do not have cotangent keys. ■

Guidelines for Sketching Graphs of Tangent and 
Cotangent Functions

To graph or with follow these steps.

Step 1 Determine the period, To locate two adjacent vertical asymptotes,
solve the following equations for x:

For and

For and

Step 2 Sketch the two vertical asymptotes found in Step 1.

Step 3 Divide the interval formed by the vertical asymptotes into four
equal parts.

Step 4 Evaluate the function for the first-quarter point, midpoint, and third-
quarter point, using the x-values found in Step 3.

Step 5 Join the points with a smooth curve, approaching the vertical
asymptotes. Indicate additional asymptotes and periods of the graph
as necessary.

EXAMPLE 3 Graphing 

Graph 

Solution

Step 1 The period of this function is To locate two adjacent vertical
asymptotes, solve and (since this is a tangent func-
tion). The two asymptotes have equations and 

Step 2 Sketch the two vertical asymptotes as shown in Figure 47 on
the next page.

x � 

�
4 ,

x � �
4 .x � �

�
4

2x � �
22x � �

�
2

�
2 .

y � tan 2x.

y � tan bx

bx � �.bx � 0y � a cot bx:

bx �
�

2
.bx � �

�

2
y � a tan bx:

�
b .

b 	 0,y � a cot bx,y � a tan bx

cot x � cos x
sin xcot x � 1

tan x

cot��x� � �cot x.

x � �2n � 1��
2 .

x � n�
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4

�
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8

582 CHAPTER 6 The Circular Functions and Their Graphs

Step 3 Divide the interval into four equal parts. This gives the fol-
lowing key x-values.

first-quarter value: middle value: 0, third-quarter value:

Step 4 Evaluate the function for the x-values found in Step 3.

Step 5 Join these points with a smooth curve, approaching the vertical
asymptotes. See Figure 47. Another period has been graphed, one half
period to the left and one half period to the right.

Now try Exercise 21.

EXAMPLE 4 Graphing 

Graph 

Solution The period is Adjacent asymptotes are at and 

Dividing the interval into four equal parts gives key 
x-values of 0, and Evaluating the function at these x-values gives the key
points.

By plotting these points and joining them with a smooth curve, we obtain the
graph shown in Figure 48. Because the coefficient �3 is negative, the graph is
reflected across the x-axis compared to the graph of 

Now try Exercise 29.

N O T E The function defined by in Example 4, graphed in
Figure 48, has a graph that compares to the graph of as follows.

1. The period is larger because and 

2. The graph is “stretched” because and 

3. Each branch of the graph goes down from left to right (that is, the function
decreases) between each pair of adjacent asymptotes because 
When the graph is reflected across the x-axis compared to the graph
of y � � a � tan bx.

a � 0,
a � �3 � 0.

��3 � 	 1.a � �3,

1
2 � 1.b � 1

2 ,

y � tan x
y � �3 tan 12 x

y � 3 tan 12 x.

��
�

2
, 3�, �0, 0�, � �

2
, �3�

�
2 .�

�
2 ,

�� � x � �x � �.

x � ��
�
1
2

� 2�.

y � �3 tan 
1

2
x.

y � a tan bx

�

8
�

�

8
,

��
�
4 , �

4 �

x

y

0

3

–3

y = –3 tan    x
Period: 2�

1
2

– �
2

� �–�
2

Figure 48

0

1

y = tan 2x

x

y

–1

Period: �
2

– �
2

– �
4

– �
8

�
8

�
4

�
2

Figure 47
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EXAMPLE 5 Graphing 

Graph 

Solution Because this function involves the cotangent, we can locate two adja-
cent asymptotes by solving the equations and The lines 
(the y-axis) and are two such asymptotes. Divide the interval into 
four equal parts, getting key x-values of Evaluating the function at
these x-values gives the following key points.

Joining these points with a smooth curve approaching the asymptotes gives the
graph shown in Figure 49.

Now try Exercise 31.

Like the other circular functions, the graphs of the tangent and cotangent
functions may be translated horizontally and vertically.

EXAMPLE 6 Graphing a Tangent Function with a Vertical Translation

Graph y � 2 � tan x.

� �

8
,

1

2�, � �

4
, 0�, �3�

8
, �

1

2�
�
8 , �

4 , and 3�
8 .

�0, �
2 �x � �

2

x � 02x � �.2x � 0

y �
1

2
 cot 2x.

y � a cot bx

x

y

0

1

–1

Period: 

y =     cot 2x1
2

�
2

�
8

�
4

�
2

3�
8

Figure 49

Analytic Solution

Every value of y for this function will be 2 units more
than the corresponding value of y in caus-
ing the graph of to be translated 2 units
up compared with the graph of See
Figure 50.

Figure 50

Graphing Calculator Solution

To see the vertical translation, observe the coordinates
displayed at the bottoms of the screens in Figures 51
and 52. For 

while for the same X-value,

Figure 51 Figure 52

Now try Exercise 37.

–4

4

�
2

�
2

–

Dot mode

–4

4

�
2

�
2

–

Dot mode

Y2 � 2 � tan X � 2 � 1 � 3.

Y1 � tan X � 1,

X � �
4 � .78539816,

x

y

0

1

–1

y = 2 + tan x

–2

2

– 3�
2

3�
2

�
2

– �–� �
2

y � tan x.
y � 2 � tan x

y � tan x,
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EXAMPLE 7 Graphing a Cotangent Function with Vertical and Horizontal
Translations

Graph 

Solution Here so the period is �. The graph will be translated down
2 units (because ), reflected across the x-axis (because of the negative
sign in front of the cotangent), and will have a phase shift (horizontal transla-
tion) unit to the right because of the argument To locate adjacent
asymptotes, since this function involves the cotangent, we solve the following
equations:

Dividing the interval into four equal parts and evaluating the func-
tion at the three key x-values within the interval gives these points.

Join these points with a smooth curve. This period of the graph, along with the
one in the domain interval is shown in Figure 53.

Now try Exercise 45.

Addition of Ordinates New functions can be formed by adding or subtract-
ing other functions. A function formed by combining two other functions, such as

has historically been graphed using a method known as addition of ordinates.
(The x-value of a point is sometimes called its abscissa, while its y-value is
called its ordinate.) To apply this method to this function, we graph the func-
tions and Then, for selected values of x, we add cos x and
sin x, and plot the points Joining the resulting points with a
sinusoidal curve gives the graph of the desired function. While this method
illustrates some valuable concepts involving the arithmetic of functions, it is
time-consuming.

With graphing calculators, this technique is easily illustrated. Let 
and Figure 54 shows the result when and

are graphed in thin graph style, and is graphed in thick
graph style. Notice that for Y1 � Y2 � Y3.X � �

6 � .52359878,
Y3 � cos X � sin XY2

Y1Y3 � Y1 � Y2.Y2 � sin X,cos X,
Y1 �

�x, cos x � sin x�.
y � sin x.y � cos x

y � cos x � sin x,

��
3�
4 , �

4 �,

� �

2
, �3�, �3�

4
, �2�, ��, �1�

�
4 � x �

5�
4

x �
�

4
� 0, so x �

�

4
and x �

�

4
� �, so x �

5�

4
.

�x �
�
4 ��.��

4

c � �2
b � 1,

y � �2 � cot�x �
�

4 �.

y

0

–3

1

c = –2

x

y = –2 – cot(x –    )4
�

�

5�
4

3�
4

�
2

�
4

– �
2

–3�
4

– �
4

Figure 53

Figure 54

Now try Exercise 61.

2

–2

–2� 2�

2

–2

–2� 2�

2

–2

–2� 2�
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Concept Check In Exercises 1–6, match each function with its graph from choices A–F.

1. 2. 3.

4. 5. 6.

A. B. C.

D. E. F.

Graph each function over a one-period interval. See Examples 1 and 2.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17.

18. 19.

20.

Graph each function over a one-period interval. See Examples 3–5.

21. 22. 23.

24. 25. 26.

27. 28. 29.

30. 31. 32.

Graph each function over a two-period interval. See Examples 6 and 7.

33. 34. 35. y � cot�3x �
�

4 �y � tan� x

2
� ��y � tan�2x � ��

y � �
1

2
 cot 2xy �

1

2
 cot 4xy � 3 tan 

1

2
x

y � �2 tan 
1

4
xy � �cot 

1

2
xy � cot 3x

y �
1

2
 cot xy � 2 tan 

1

4
xy � 2 cot x

y � 2 tan xy � tan 
1

2
xy � tan 4x

y � 2 �
1

4
 sec� 1

2
x � ��

y � 1 �
1

2
 csc�x �

3�

4 �y � 1 � 2 csc�x �
�

2 �
y � 2 � 3 sec�2x � ��y � csc� 1

2
x �

�

4 �
y � sec� 1

2
x �

�

3 �y � csc�x �
�

3 �y � sec�x �
�

4 �
y � sec�x �

3�

4 �y � csc�x �
�

4 �y �
1

2
 csc�x �

�

2 �
y � �

1

2
 csc�x �

�

2 �y � �2 sec 
1

2
xy � 3 sec 

1

4
x

x

y

0
�
4

5�
4

x

y

0
– �

2
�
2

x

y

0

4
– � 3�

4

x

y

0

1

–1– �
2

�
2

x

y

0

1

–1 � 2�

x

y

0 �

y � cot�x �
�

4 �y � tan�x �
�

4 �y � �cot x

y � �tan xy � �sec xy � �csc x

6.4 Graphs of the Other Circular Functions 585

1. B 2. C 3. E 4. A 5. D
6. F
7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.
y

–1
x

0

3

1

3�
2

�
2

�
2

y = 1 – 2 csc (x +    )�
2

– �

y

2

–1

y = 2 + 3 sec (2x – �) 

x0

5

3�
4

5�
4

�
4

0 x

y

1

–1

y = csc (  x –    )�
4

1
2

3�
2

5�
2

9�
2

7�
2

�
2

0 x

y

1

–1

y = sec (  x +    )�
3

1
2

7�
3

4�
3

�
3

13�
3

10�
3

0 x

y

1

–1 2�
3

5�
3

7�
6

�
6

�
3

y = csc (x +     )�
3

–
0 x

y

1

–1 5�
4

7�
4

3�
4

9�
4

�
4

y = sec (x +     )�
4

0 x

y

1

–1 3�
4

7�
4

5�
4

–

�
4

�
4

y = sec (x +      )3�
4

0 x

y

1

–1 5�
4

9�
4

�
4

y = csc (x –     )�
4

x

y

0 1

3�
2

– �
2

�
2

�

y =      csc(x –    )�
2

1
2

x

y

0 1

3�
2

– �
2

�
2

�

y = –     csc(x +    )�
2

1
2

x

y

0

2

–� �

2�

3�

y = –2 sec    x1
2

x

y

0
–3

3

–2� 2�

4�

6�

y = 3 sec    x1
4

6.4 Exercises
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36. 37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

Concept Check In Exercises 47–52, tell whether each statement is true or false. If
false, tell why.

47. The smallest positive number k for which is an asymptote for the tangent func-
tion is .

48. The smallest positive number k for which is an asymptote for the cotangent
function is .

49. The tangent and secant functions are undefined for the same values.

50. The secant and cosecant functions are undefined for the same values.

51. The graph of in Figure 45 suggests that for all x in the
domain of tan x.

52. The graph of in Figure 40 suggests that for all x in the
domain of sec x.

53. Concept Check If c is any number, then how many solutions does the equation
have in the interval ?

54. Concept Check If c is any number such that , then how many solu-
tions does the equation have over the entire domain of the secant function?

55. Consider the function defined by . What is the domain of f?
What is its range?

56. Consider the function defined by . What is the domain of g?
What is its range?

(Modeling) Solve each problem.

57. Distance of a Rotating Beacon A rotating beacon is located at point A next to a
long wall. (See the figure.) The beacon is 4 m from the wall. The distance d is
given by

,

where t is time measured in seconds since the beacon started rotating. (When ,
the beacon is aimed at point R. When the beacon is aimed to the right of R, the
value of d is positive; d is negative if the beacon is aimed to the left of R.) Find d
for each time.

(a)
(b)
(c)
(d)
(e) Why is .25 a meaningless value

for t?

t � 1.2
t � .8
t � .4
t � 0

t � 0

d � 4 tan 2�t

g�x� � �2 csc�4x � ��

f �x� � �4 tan�2x � ��
c � sec x

�1 � c � 1

��2�, 2��c � tan x

sec��x� � sec xy � sec x

tan��x� � tan xy � tan x

�
2

x � k

�
2

x � k

y �
2

3
 tan� 3

4
x � �� � 2y � 1 � 2 cot 2�x �

�

2 �
y � �2 � 3 tan�4x � ��y � �1 �

1

2
 cot�2x � 3��

y � 3 �
1

2
 tan xy � �1 � 2 tan x

y � �2 � cot xy � 1 � cot x

y � 1 � tan xy � 1 � tan xy � cot�2x �
3�

2 �
586 CHAPTER 6 The Circular Functions and Their Graphs

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

Answer graphs for odd-numbered
Exercises 33–45 are included on
page A-39 of the answer section
at the back of the text.

x

y

y = –    cot 2x1
2

�
2

�
4

–2

2

0
x

y

y =     cot 4x1
2

�
4

�
8

–2

2

0

x

y

3

–3

–� �
0

y = 3 tan    x1
2

x

y

–2� 2�

y = –2 tan    x1
4

–2

2

0

x

y

–1
1

0 2��

y = –cot    x1
2

y

x
0

y = cot 3x 

–1

1

�
3

�
6

y

x
1
0–1

y =     cot x1
2

�
2

�

y

x
–2

0
2

–2�

–�

� 2�

y = 2 tan    x1
4

y

x

2

0

y = 2 cot x

–2
��

2

y

x0

y = 2 tan x

2

–2

�
2

�
2

–

x

y

–� ��
2

�
2

–

–1

1

y = tan    x1
2

x

y

0
1

–1
�
16

�
8

�
16

�
8

–

–

y = tan 4x

y

2
x0–� � 3�2�

y = 2 +    sec (   x – �)1
4

1
2

y

x
1
2

0 3�
2

7�
4

3�
4

5�
2

�
2

11�
4

� 2�

y = 1 –     csc (x –      )3�
4

1
2

R

A

a

d

4 m
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6.4 Graphs of the Other Circular Functions 587

34. 36.

38. 40.

42. 44.

46.

47. true 48. false; The smallest
such k is . 49. true 50. false;
Secant values are undefined when

, while cosecant 

values are undefined when
. 51. false;

for all x in the
domain. 52. true 53. four
54. none

tan��x� � �tan x
x � n�

x �
�

2
� n�

�

x

y

0
–2

2

� 2�

2�
3

4�
3

8�
3

10�
3

y =     tan (   x – �) – 22
3

3
4

x0

y

–1

y = –2 + 3 tan (4x + �)

–2

�
8

3�
8

�
8

––

x

y

3

0

�
2

3�
2

�
2

– �

y = 3 +    tan x1
2

y = –2 – cot x

x

–2

0

y

�
2

�
2 �–� –

x

y

y = 1 – tan x

�
2

3�
2

�
2

–
0

1

x

y

–1

1

0 �
4

�
2

� 5�
4

y = cot (2x –      )3�
2

x

y

1
0–� � 2� 3�

y = tan (    + �)x
2

58. Distance of a Rotating Beacon In the figure for Exercise 57, the distance a is
given by

.

Find a for each time.

(a) (b) (c)

59. Simultaneously graph and in the window by with a
graphing calculator. Write a sentence or two describing the relationship of tan x and
x for small x-values.

60. Between each pair of successive asymptotes, a portion of the graph of or
resembles a parabola. Can each of these portions actually be a parabola?

Explain.

Use a graphing calculator to graph , , and on the same screen. Evaluate
each of the three functions at , and verify that .
See the discussion on addition of ordinates.

61. , 62. ,

Relating Concepts
For individual or collaborative investigation

(Exercises 63–68)

Consider the function defined by from Example 7. Work these
exercises in order.

63. What is the smallest positive number for which is undefined?

64. Let k represent the number you found in Exercise 63. Set equal to k, and solve
to find the smallest positive number for which is undefined.

65. Based on your answer in Exercise 64 and the fact that the cotangent function has
period , give the general form of the equations of the asymptotes of the graph of

. Let n represent any integer.

66. Use the capabilities of your calculator to find the smallest positive x-intercept of the
graph of this function.

67. Use the fact that the period of this function is to find the next positive x-intercept.

68. Give the solution set of the equation over all real numbers.
Let n represent any integer.

�2 � cot�x �
�
4 � � 0

�

y � �2 � cot�x �
�
4 �

�

cot�x �
�
4 �
x �

�
4

y � cot x

y � �2 � cot�x �
�
4 �

Y2 � sec XY1 � cos XY2 � sin 2XY1 � sin X

Y1��
6 � � Y2��

6 � � �Y1 � Y2� ��
6 �X � �

6

Y1 � Y2Y2Y1

y � csc x
y � sec x

��1, 1���1, 1�y � xy � tan x

t � 1.24t � .86t � 0

a � 4� sec 2�t �

9
9

55. domain: , where n is an integer ; range: 56. domain: , where n is an integer ; 

range: 57. (a) 0 m (b) �2.9 m (c) �12.3 m (d) 12.3 m (e) It leads to , which is undefined.

58. (a) 4 m (b) 6.3 m (c) 63.7 m In Exercises 61 and 62, we show the display for at 

61. 62. 63. 64. 65.

66. approximately .3217505544
67. approximately 3.463343208
68. �x � x � .3217505544 � n��

y �
5�

4
� n�

5�

4
�4

–4

–2� 2�

3

–3

–2� 2�

X �
�

6
.Y1 � Y2

tan 
�

2
���, �2� � �2, ��


�x � x �
n�

4
���, ��
�x � x � �2n � 1�

�

4
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x

y

O

P(x, y)

(a, 0)(–a, 0)

(0, a)

(0, –a)

R(x, 0)

Q(0, y)
y

x�

Figure 56

6.5 Harmonic Motion
Simple Harmonic Motion ■ Damped Oscillatory Motion

Simple Harmonic Motion In part A of Figure 55, a spring with a weight
attached to its free end is in equilibrium (or rest) position. If the weight is pulled
down a units and released (part B of the figure), the spring’s elasticity causes the
weight to rise a units above the equilibrium position, as seen in part C,
and then oscillate about the equilibrium position. If friction is neglected, this os-
cillatory motion is described mathematically by a sinusoid. Other applications
of this type of motion include sound, electric current, and electromagnetic waves. 

Figure 55

To develop a general equation for such motion, consider Figure 56. Suppose
the point moves around the circle counterclockwise at a uniform angular
speed �. Assume that at time P is at The angle swept out by ray OP
at time t is given by The coordinates of point P at time t are

As P moves around the circle from the point the point oscil-
lates back and forth along the y-axis between the points and 
Similarly, the point oscillates back and forth between and 
This oscillatory motion is called simple harmonic motion.

��a, 0�.�a, 0�R�x, 0�
�0, �a�.�0, a�

Q�0, y��a, 0�,

x � a cos � � a cos �t and y � a sin � � a sin �t.

� � �t.
�a, 0�.t � 0,

P�x, y�

a

y

0

–a
A. B. C.

�a 	 0�

Answer graphs for the Summary
Exercises are given on page A-39
of the answer section at the back
of the text.

These summary exercises provide practice with the various graphing techniques pre-
sented in this chapter. Graph each function over a one-period interval.

1. 2.

3. 4.

5. 6.

Graph each function over a two-period interval.

7. 8.

9. 10. y � 2 � sec���x � 3��y � 3 � 4 sin�2.5x � ��

y � 10 cos� x

4
�

�

2 �y � �5 sin 
x

3

y � 3 tan��x

2
� ��y � �4 csc .5x

y � 3 sec 
�x

2
y � �2 � .5 cos 

�

4
�x � 1�

y � 4 cos 1.5xy � 2 sin �x

Summary Exercises on Graphing Circular Functions
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6.5 Harmonic Motion 589

TEACHING TIP Mention that simple
harmonic motion is an important
topic for students majoring in
engineering or physics.

The amplitude of the motion is and the period is The moving points
P and Q or P and R complete one oscillation or cycle per period. The number of
cycles per unit of time, called the frequency, is the reciprocal of the period,
where 

Simple Harmonic Motion

The position of a point oscillating about an equilibrium position at time t is
modeled by either

where a and � are constants, with The amplitude of the motion is
the period is and the frequency is 

EXAMPLE 1 Modeling the Motion of a Spring

Suppose that an object is attached to a coiled spring such as the one in
Figure 55. It is pulled down a distance of 5 in. from its equilibrium position, and
then released. The time for one complete oscillation is 4 sec.

(a) Give an equation that models the position of the object at time t.

(b) Determine the position at 

(c) Find the frequency.

Solution

(a) When the object is released at the distance of the object from the
equilibrium position is 5 in. below equilibrium. If is to model the mo-
tion, then must equal �5. We use

with We choose the cosine function because 
and (Had we chosen the sine function, a phase

shift would have been required.) The period is 4, so

Solve for �. (Section 1.1)

Thus, the motion is modeled by

(b) After 1.5 sec, the position is

Since the object is above the equilibrium position.

(c) The frequency is the reciprocal of the period, or 

Now try Exercise 9.

1
4 .

3.54 	 0,

s�1.5� � �5 cos� �

2
�1.5�	 � 3.54 in.

s�t� � �5 cos 
�

2
t.

2�

�
� 4, or � �

�

2
.

�5 � 1 � �5.cos 0 � 1,
cos ��0� �a � �5.

s�t� � a cos �t,

s�0�
s�t�

t � 0,

t � 1.5 sec.

�
2� .2�

� ,� a �,
� 	 0.

s(t) � a cos 
t or s(t) � a sin 
 t,

� 	 0.

�
2� ,

2�
� .�a�,
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.5

0 2�

–.2

y1 = e–x

y2 = –e–x

y3 = e–x sin x

Figure 57

EXAMPLE 2 Analyzing Harmonic Motion

Suppose that an object oscillates according to the model

where t is in seconds and is in feet. Analyze the motion.

Solution The motion is harmonic because the model is of the form 
Because the object oscillates 8 ft in either direction from its

starting point. The period is the time, in seconds, it takes for one com-
plete oscillation. The frequency is the reciprocal of the period, so the object
completes oscillation per sec.

Now try Exercise 15.

Damped Oscillatory Motion In the example of the stretched spring, we
disregard the effect of friction. Friction causes the amplitude of the motion to di-
minish gradually until the weight comes to rest. In this situation, we say that the
motion has been damped by the force of friction. Most oscillatory motions are
damped, and the decrease in amplitude follows the pattern of exponential decay.
A typical example of damped oscillatory motion is provided by the function
defined by

Figure 57 shows how the graph of is bounded above by the
graph of and below by the graph of The damped motion
curve dips below the x-axis at but stays above the graph of Figure 58
shows a traditional graph of along with the graph of 

Figure 58

Shock absorbers are put on an automobile in order to damp oscillatory mo-
tion. Instead of oscillating up and down for a long while after hitting a bump or
pothole, the oscillations of the car are quickly damped out for a smoother ride.

Now try Exercise 21.

–1

1

t

y

y = sin t

s(t) = e – tsin t
y = e– t

y = –e– t

2��

y � sin t.s�t� � e�t sin t,
y2.x � �

y2 � �e�x.y1 � e�x
y3 � e�x sin x

s�t� � e�t sin t.

3
2� � .48

2�
3 � 2.1

a � 8,a sin �t.
s�t� �

s�t�

s�t� � 8 sin 3t,
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6.5 Harmonic Motion 591

1. (a)
(b) ; The weight is neither
moving upward nor downward. At

the motion of the weight is
changing from up to down.

2. (a)

(b) ; upward
3. (a)
(b) ; upward

4. (a)

(b) ; downward
5.

6.

7.

8.

9. (a)

(b) 3.46 in. (c)
1

3

s�t� � �4 cos 
2�

3
t

.3

0 .05

–.3

s�t� � .06 cos 440�t

.3

0 .05

–.3

s�t� � .14 cos 110�t

.3

0 .05

–.3

s�t� � .11 cos 220�t

.3

0 .05

–.3

s�t� � .21 cos 55�t
s�1� � �2

s�t� � �4 cos 
5�

3
t

s�1� � 0
s�t� � �3 cos 2.5�t

s�1� � �2.5

s�t� � 5 cos 
4�

3
t

t � 1,

s�1� � 2
s�t� � 2 cos 4�t

6.5 Exercises

(Modeling) Springs Suppose that a weight on a spring has initial position and
period P.

(a) Find a function s given by that models the displacement of the
weight.

(b) Evaluate . Is the weight moving upward, downward, or neither when ?
Support your results graphically or numerically.

1. in.; sec 2. in.; sec

3. in.; sec 4. in.; sec

(Modeling) Music A note on the piano has given frequency F. Suppose the maximum
displacement at the center of the piano wire is given by . Find constants a and so
that the equation models this displacement. Graph s in the viewing win-
dow by .

5. ; 6. ; 

7. ; 8. ; 

(Modeling) Solve each problem. See Examples 1 and 2.

9. Spring An object is attached to a coiled spring, as in Figure 55. It is pulled down
a distance of 4 units from its equilibrium position, and then released. The time for
one complete oscillation is 3 sec.

(a) Give an equation that models the position of the object at time t.
(b) Determine the position at sec.
(c) Find the frequency.

10. Spring Repeat Exercise 9, but assume that the object is pulled down 6 units and
the time for one complete oscillation is 4 sec.

11. Particle Movement Write the equation and then determine the amplitude, period,
and frequency of the simple harmonic motion of a particle moving uniformly around
a circle of radius 2 units, with angular speed

(a) 2 radians per sec (b) 4 radians per sec.

12. Pendulum What are the period P and frequency T of oscillation of a pendulum of 

length ft? Hint: , where L is the length of the pendulum in feet and P

is in seconds.

13. Pendulum In Exercise 12, how long should the pendulum be to have period 1 sec?

14. Spring The formula for the up and down motion of a weight on a spring is 
given by

.

If the spring constant k is 4, what mass m must be used to produce a period of 1 sec?

15. Spring The height attained by a weight attached to a spring set in motion is

inches after t seconds.

(a) Find the maximum height that the weight rises above the equilibrium position 
of .

(b) When does the weight first reach its maximum height, if ?
(c) What are the frequency and period?

t � 0
y � 0

s�t� � �4 cos 8�t

s�t� � a sin� k

m
t

�
P � 2�
 L

32�1
2

t � 1.25

s�0� � .06F � 220s�0� � .14F � 55

s�0� � .11F � 110s�0� � .21F � 27.5

��.3, .3��0, .05�
s�t� � a cos �t

�s�0�

P � 1.2s�0� � �4P � .8s�0� � �3

P � 1.5s�0� � 5P � .5s�0� � 2

t � 1s�1�

s�t� � a cos �t

s�0�
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10. (a)

(b) 2.30 in. (c)

11. (a) ; 
amplitude: 2; period: ; 

frequency: 

(b) ; amplitude: 2; 

period: ; frequency: 

12. period: ; frequency: 

13. 14.

15. (a) 4 in. (b) after sec

(c) 4 cycles per sec; sec

16. (a) amplitude: ; 

period: ; frequency: 

(b)

17. (a) 5 in. (b) 2 cycles per sec; 

sec (c) after sec

(d) approximately 4; After 
1.3 sec, the weight is about 4 in.
above the equilibrium position.

18. (a) 4 in. (b) cycles 

per sec; sec

(c) after sec

(d) approximately 2; After 
1.466 sec, the weight is about 2 in.
above the equilibrium position.
19. (a)

(b) sec

20. (a)
(b) 3 cycles per sec 21. 0; ;
They are the same. 22. for 

and : ; for 

and : none in ; 

Because , 

.e��� 2 sin 
�

2
� e��� 2

sin 
�

2
� 1

�0, ��y3y1

1.5707963 �
�

2
y2

y1

�
s�t� � �2 cos 6�t

�

6

s�t� � �3 cos 12t

�

10

�

5

5

�

1

4

1

2

s�t� �
1

2
 sin 
2t


2

2�

2�

1

2

1

4

1

8

1

�2

8

�2

4

�

�

4

2

�

�

2

s�t� � 2 sin 4t

1

�

�
s�t� � 2 sin 2t

1

4

s�t� � �6 cos 
�

2
t 16. Spring (See Exercise 14.) A spring with spring constant and a 1-unit 

mass m attached to it is stretched and then allowed to come to rest.

(a) If the spring is stretched ft and released, what are the amplitude, period, and
frequency of the resulting oscillatory motion?

(b) What is the equation of the motion?

17. Spring The position of a weight attached to a spring is

inches after t seconds.

(a) What is the maximum height that the weight rises above the equilibrium
position?

(b) What are the frequency and period?
(c) When does the weight first reach its maximum height?
(d) Calculate and interpret .

18. Spring The position of a weight attached to a spring is

inches after t seconds.

(a) What is the maximum height that the weight rises above the equilibrium
position?

(b) What are the frequency and period?
(c) When does the weight first reach its maximum height?
(d) Calculate and interpret .

19. Spring A weight attached to a spring is pulled down 3 in. below the equilibrium
position.

(a) Assuming that the frequency is cycles per sec, determine a model that gives
the position of the weight at time t seconds.

(b) What is the period?

20. Spring A weight attached to a spring is pulled down 2 in. below the equilibrium
position.

(a) Assuming that the period is sec, determine a model that gives the position of
the weight at time t seconds.

(b) What is the frequency?

Use a graphing calculator to graph , , and in the view-
ing window by .

21. Find the t-intercepts of the graph of . Explain the relationship of these intercepts
with the x-intercepts of the graph of .

22. Find any points of intersection of and or and . How are these points related
to the graph of ?y � sin x

y3y1y2y1

y � sin x
y1

��.5, .5��0, ��
y3 � �e�ty2 � e�ty1 � e�t sin t

1
3

6
�

s�1.466�

s�t� � �4 cos 10t

s�1.3�

s�t� � �5 cos 4�t

1
2

k � 2
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Chapter 6 Summary

KEY TERMS

6.1 radian
sector of a circle

6.2 unit circle
circular functions
angular speed �

linear speed v
6.3 periodic function

period
sine wave (sinusoid)
amplitude

phase shift
argument

6.4 addition of ordinates
6.5 simple harmonic

motion

frequency
damped oscillatory

motion

QUICK REVIEW

C O N C E P T S E X A M P L E S

6.1 Radian Measure

An angle with its vertex at the center of a circle that inter-
cepts an arc on the circle equal in length to the radius of the
circle has a measure of 1 radian.

Degree/Radian Relationship

Converting Between Degrees and Radians

1. Multiply a degree measure by radian and simplify to
convert to radians.

2. Multiply a radian measure by and simplify to con-
vert to degrees.

Arc Length
The length s of the arc intercepted on a circle of radius r by a
central angle of measure radians is given by the product of
the radius and the radian measure of the angle, or

in radians.

Area of a Sector
The area of a sector of a circle of radius r and central angle 
is given by

in radians.

Convert 135° to radians.

Convert radians to degrees.

In the figure, so

The area of the sector in the figure is

A �
1

2
�4�2� 3

4� � 6 square units.

� �
s

r
�

3

4
 radian.

s � r�

�
5�

3
 radians � �

5�

3 �180°

� � � �300°

�
5�
3

135° � 135� �

180
 radian� �

3�

4
 radians

�A �
1
2

r2�,

�

�s � r�,

�

180°
�

�
180

180° � � radians

0 r = 4

s = 3
�
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C O N C E P T S E X A M P L E S

6.2 The Unit Circle and Circular Functions

594 CHAPTER 6 The Circular Functions and Their Graphs

Circular Functions
Start at the point on the unit circle and lay
off an arc of length along the circle, going counterclock-
wise if s is positive, and clockwise if s is negative. Let the
endpoint of the arc be at the point . The six circular
functions of s are defined as follows. (Assume that no de-
nominators are 0.)

The Unit Circle

Formulas for Angular and Linear Speed

Use the unit circle to find each value.

A belt runs a pulley of radius 8 in. at 60 revolutions per min.
Find the angular speed in radians per minute, and the lin-
ear speed v of the belt in inches per minute.

radians per min

in. per minv � r� � 8�120�� � 960�

� � 60�2�� � 120�

�

cot 
�

3
�

1
2


3
2

�

3

3

sec 
7�

6
�

1

�
3
2

� �
2
3

3

csc 
7�

4
�

1

�
2
2

� �
2

tan 
�

4
�


2
2


2
2

� 1

cos 
3�

2
� 0

sin 
5�

6
�

1

2

(0, 1)

(1, 0)

(0, –1)

(–1, 0) 00°180°

60°
90°

150°

210°

300°

360°
x

y

315°
330°

2��

135°
120°

225°
240°
270°

45°
30°

1
2

1
2

1
2

(   ,     )√3
2

1
2(   , –     )√3

2
1
2(–   , –     )√3

2

(     ,     )√2
2

√2
2

(    , –   )√3
2

(    ,   )√3
2

1
2

1
2

(–   ,     )√3
2

(–     ,     )√2
2

√2
2

(     , –     )√2
2

√2
2

1
2(–    , –   )√3

2

(–     , –     )√2
2

√2
2

(–     ,   )√3
2

Unit circle x2 + y2 = 1

3�

2

5�

3

7�

44�

3

5�

4

7�

6

5�

6

3�

4

2�

3

11�

6

�

3

�

2
�

4
�

6

0

 cot s �
x
y

 sec s �
1
x

 csc s �
1
y

 tan s �
y
x

 cos s � x sin s � y

�x, y�

� s �
x2 � y2 � 1�1, 0�

Angular Speed Linear Speed

(� in radians per unit time,
� in radians)

v � r


v �
r�

t

v �
s
t


 �
�

t
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C O N C E P T S E X A M P L E S

6.3 Graphs of the Sine and Cosine Functions

Sine and Cosine Functions

Domain: Domain:
Range: Range:
Amplitude: 1 Amplitude: 1
Period: Period:

The graph of

or

has

1. amplitude 2. period 

3. vertical translation c units up if or units down
if and

4. phase shift d units to the right if or units to
the left if 

See pages 562 and 565 for a summary of graphing
techniques.

Graph 

period: amplitude: 1

domain: range: 

Graph 

period: amplitude: 2

domain: range: ��2, 2����, ��
2�

x

y

0

–2

2
y = –2 cos x

4�2�

y � �2 cos x.

��1, 1����, ��

2�
3

x

y

0

–1

1
y = sin 3x

�
3

� 4�
3

2�
3

y � sin 3x.

d � 0.
� d �d 	 0

c � 0,
� c �c 	 0

2�
b ,� a �,

b 	 0,

y � c � a cos b(x � d ),y � c � a sin b(x � d )

2�2�

��1, 1���1, 1�
���, �����, ��

x

y

0

–1

1 y = cos x

�
2

3� 2��
2

x

y

0

–1

1 y = sin x

�
2

3� 2��
2

6.4 Graphs of the Other Circular Functions

Cosecant and Secant Functions

Domain: Domain:
where n an integer where n an integer

Range: Range:
Period: Period:

See page 577 for a summary of graphing techniques.

Graph one period of 

period: 

phase shift: 

domain: 

where n is an integer

range: 

(continued)

���, �1� � �1, ��
�

�x �x � �
4 � n�,

�
�
4

2�

0
x

y

1

–1 5�
4

7�
4

9�
4

3�
4

y = sec(x +     )�
4

�
4

y � sec�x �
�
4 �.

2�2�
���, �1� � �1, �����, �1� � �1, ��

��
�x �x � �2n � 1� �

2 ,�x �x � n�,

x

y

0

y = sec x

1

–1– �
2

�–�

�
2

x

y

0

y = csc x1

–1

– �
2

� �–�
2
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Tangent and Cotangent Functions

Domain: Domain:
where n is an integer where n is an integer

Range: Range:
Period: Period:

See page 581 for a summary of graphing techniques.

Graph one period of 

period: 

domain: 

where n is an integer
range: ���, ��

�
�x �x � �2n � 1� �

2 ,

�

y

x0

y = 2 tan x

2

–2
– �

2

�
2

y � 2 tan x.

��
���, �����, ��

��
�x � x � n�,�x � x � �2n � 1� �

2,

x

y

0

y = cot x

�
2

�

1
x

y

0

y = tan x

– �
2

�
2

1

6.5 Harmonic Motion

Simple Harmonic Motion
The position of a point oscillating about an equilibrium posi-
tion at time t is modeled by either

or

where a and are constants, with . The amplitude of 

the motion is , the period is , and the frequency is 

A spring oscillates according to

where t is in seconds and is in inches.

 frequency �
3

�

 period �
2�

6
�

�

3

 amplitude � ��5� � 5

s�t�

s�t� � �5 cos 6t,

�
2� .2�

��a �
� 	 0�

s�t� � a sin 
t,s�t� � a cos 
t

596 CHAPTER 6 The Circular Functions and Their Graphs

1. Consider each angle in standard position having the given radian measure. In what
quadrant does the terminal side lie?

(a) 3 (b) 4 (c) (d) 7

2. Which is larger—an angle of 1° or an angle of 1 radian? Discuss and justify your
answer.

Convert each degree measure to radians. Leave answers as multiples of .

3. 120° 4. 800°

Convert each radian measure to degrees.

5. 6. �
6�

5

5�

4

�

�2

1. (a) II (b) III (c) III (d) I

3. 4. 5. 225°

6. �216°

40�

9

2�

3

Chapter 6 Review Exercises

9
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7. Railroad Engineering The term grade has several different meanings in construc-
tion work. Some engineers use the term grade to represent of a right angle and
express grade as a percent. For instance, an angle of .9° would be referred to as a 1%
grade. (Source: Hay, W., Railroad Engineering, John Wiley & Sons, 1982.)

(a) By what number should you multiply a grade to convert it to radians?
(b) In a rapid-transit rail system, the maximum grade allowed between two stations

is 3.5%. Express this angle in degrees and radians.

8. Concept Check Suppose the tip of the minute hand of a
clock is 2 in. from the center of the clock. For each of the
following durations, determine the distance traveled by
the tip of the minute hand.

(a) 20 min (b) 3 hr

Solve each problem. Use a calculator as necessary.

9. Arc Length The radius of a circle is 15.2 cm. Find the length of an arc of the cir-
cle intercepted by a central angle of radians.

10. Area of a Sector A central angle of radians forms a sector of a circle. Find the
area of the sector if the radius of the circle is 28.69 in.

11. Height of a Tree A tree 2000 yd away subtends an angle of 1° . Find the height
of the tree to two significant digits.

12. Rotation of a Seesaw The seesaw at a playground is 12 ft long. Through what
angle does the board rotate when a child rises 3 ft along the circular arc?

Consider the figure here for Exercises 13 and 14.

13. What is the measure of in radians?

14. What is the area of the sector?

Solve each problem.

15. Find the time t if radians and radians per sec.

16. Find angle if sec and radians per sec.

17. Linear Speed of a Flywheel Find the linear speed of a point on the edge of a fly-
wheel of radius 7 m if the flywheel is rotating 90 times per sec.

18. Angular Speed of a Ferris Wheel A Ferris
wheel has radius 25 ft. If it takes 30 sec for the
wheel to turn radians, what is the angular
speed of the wheel?

5�
6

� � 9t � 12�

� � 8�
9� � 5�

12

�

10�

7�
4

3�
4

1
100

7. (a) (b) 3.15°; .055 radian

8. (a) (b) .

9. 35.8 cm 10. 2263 in.2

11. 41 yd 12. radian

13. radian 14. 16 sq units

15. sec 16. 108 radians

17. 1260 m per sec

18. radian per sec
�

36

�

15

32

1

2

1

2

12� in
4�

3
 in.

�

200

2 in. 

8

4
�
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19. Concept Check Consider the area-of-a-sector formula . What well-
known formula corresponds to the special case ?

Find the exact function value. Do not use a calculator.

20. 21. 22.

Use a calculator to find an approximation for each circular function value. Be sure your
calculator is set in radian mode.

23. 24.

25. Approximate the value of s in the interval if .

Find the exact value of s in the given interval that has the given circular function value.
Do not use a calculator.

26. ; 27. ;

(Modeling) Solve each problem.

28. Phase Angle of the Moon Because the moon orbits Earth, we observe different
phases of the moon during the period of a month. In the figure, t is called the phase
angle.

The phase F of the moon is computed by

and gives the fraction of the moon’s face that is illuminated by the sun. (Source:
Duffet-Smith, P., Practical Astronomy with Your Calculator, Cambridge University
Press, 1988.) Evaluate each expression and interpret the result.

(a) (b) (c) (d)

29. Atmospheric Effect on Sunlight The shortest path for the sun’s rays through
Earth’s atmosphere occurs when the sun is directly overhead. Disregarding the cur-
vature of Earth, as the sun moves lower on the horizon, the distance that sunlight
passes through the atmosphere increases by a factor of csc , where is the angle of
elevation of the sun. This increased distance reduces both the intensity of the sun and
the amount of ultraviolet light that reaches Earth’s surface. See the figure at the top
of the next page. (Source: Winter, C., R. Sizmann, and Vant-Hunt (Editors), Solar
Power Plants, Springer-Verlag, 1991.)

��

F�3�

2 �F���F� �

2 �F�0�

F�t� �
1

2
�1 � cos t�,

Earth
Sun

Moon

t

sec s � �
2
3

3��,
3�

2 	tan s � �
3� �

2
, �	

sin s � .4924�0, �
2 �
cot 3.0543cos��.2443�

csc��
11�

6 �tan��
7�

3 �cos 
2�

3

� � 2�
A � 1

2 r2�

598 CHAPTER 6 The Circular Functions and Their Graphs

19. , the formula for the 

area of a circle 20.

21. 22. 2
23. .9703 24.

25. .5148 26. 27.

28. (a) 0; The face of the moon 

is not visible. (b) ; Half the

face of the moon is visible.
(c) 1; The face of the moon is 

completely visible. (d) ; Half

the face of the moon is visible.

1

2

1

2

7�

6

2�

3

�11.4266
�
3

�
1

2

A � �r2
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(a) Verify that .
(b) Determine when .
(c) The atmosphere filters out the ultraviolet light that causes skin to burn. Com-

pare the difference between sunbathing when and when Which
measure gives less ultraviolet light?

30. Concept Check Which one of the following is true about the graph of 

A. It has amplitude 2 and period B. It has amplitude 4 and period .
C. Its range is D. Its range is 

31. Concept Check Which one of the following is false about the graph of

A. Its range is B. Its domain is 
C. Its amplitude is 3, and its period is .
D. Its amplitude is 3, and its period is .

For each function, give the amplitude, period, vertical translation, and phase shift, as
applicable.

32. 33. 34.

35. 36. 37.

38. 39. 40.

Concept Check Identify the circular function that satisfies each description.

41. period is , x-intercepts are of the form , where n is an integer

42. period is , graph passes through the origin

43. period is , graph passes through the point 

Graph each function over a one-period interval.

44. 45. 46.

47. 48. 49.

50. Explain how by observing the graphs of and on the same axes,
one can see that for exactly two x-values in , What are the two 
x-values?

sin x � cos x.�0, 2��
y � cos xy � sin x

y � �1 � 3 sin 2xy � 1 � 2 cos 3xy � tan�x �
�

2 �
y � cos�x �

�

4 �y �
1

2
 cot 3xy � 3 cos 2x

��
2, 0�2�

2�

n��

y �
1

2
 csc�2x �

�

4 �y � �sin�x �
3�

4 �y � 3 cos�x �
�

2 �
y � 3 �

1

4
 cos 

2

3
xy � 1 � 2 sin 

1

4
xy � 2 sin 5x

y � �
1

2
 cos 3xy � tan 3xy � 2 sin x

�
4�

���, ��.��3, 3�.
y � �3 cos 12 x?

��4, 0�.�0, 4�.
��

2 .

y � 4 sin 2x?

� � �
3 .� � �

2

d � 2h�
d � h csc �

Atmosphere

h

d

Earth

�

29. (b) (c) less ultraviolet

light when 30. B

31. D 32. 2; ; none; none

33. not applicable; none;

none 34. none; none

35. 2; none; none 36. 2; 

1 up; none 37.

3 up; none 38. 3; none;

to the left 39. 1; ; none;

to the right 40. not 

applicable; ; none; to the 

right 41. tangent 42. sine
43. cosine 44.

45. 46.

47. 48.

49. y

2

x0
–1

y = –1 – 3 sin 2x

–4

3�
4

�
4 �

y

x0
–1

y = 1 + 2 cos 3x

2

3

1

2�
3

y

x0
–1

1

�
2

�

y = tan (x –     )�
2

y

x
1

–1
0 �

4
9�
4

5�
4

y = cos (x –     )�
4

y

x

1

0

–1

�
3

�
6

y =    cot 3x1
2

y

x
1

0
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�
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�
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Solve each problem.

51. Viewing Angle to an Object Let
a person feet tall stand d feet
from an object feet tall, where

Let be the angle of ele-
vation to the top of the object. See
the figure.

(a) Show that 
(b) Let and Graph d for the interval 

52. (Modeling) Tides The figure shows a func-
tion f that models the tides in feet at Clearwater
Beach, Florida, x hours after midnight starting
on August 26, 1998. (Source: Pentcheff, D.,
WWW Tide and Current Predictor.)

(a) Find the time between high tides.
(b) What is the difference in water levels

between high tide and low tide?
(c) The tides can be modeled by

Estimate the tides when 

53. (Modeling) Maximum Temperatures The maximum afternoon temperature in a
given city might be modeled by

where t represents the maximum afternoon temperature in month x, with rep-
resenting January, representing February, and so on. Find the maximum after-
noon temperature for each month.

(a) January (b) April (c) May
(d) June (e) August (f) October

54. (Modeling) Average Monthly Temperature
The average monthly temperature (in °F) in
Chicago, Illinois, is shown in the table.

(a) Plot the average monthly temperature
over a two-year period. Let cor-
respond to January of the first year.

(b) Determine a model function of the form
where a, b,

c, and d are constants.
(c) Explain the significance of each constant.
(d) Graph f together with the data on the

same coordinate axes. How well does f
model the data?

(e) Use the sine regression capability of a
graphing calculator to find the equation
of a sine curve that fits these data.

55. (Modeling) Pollution Trends The amount of pollution in the air fluctuates with the
seasons. It is lower after heavy spring rains and higher after periods of little rain. In
addition to this seasonal fluctuation, the long-term trend is upward. An idealized
graph of this situation is shown in the figure on the next page.

f �x� � a sin b�x � d� � c,

x � 1

x � 1
x � 0

t � 60 � 30 cos 
x�

6
,

x � 10.

f �x� � .6 cos�.511�x � 2.4�� � 2.

0 � � 

�
2 .h1 � 5.h2 � 55

d � �h2 � h1� cot �.

�h2 	 h1.
h2

h1

51. (b)

52. (a) 12.3 hr (b) 1.2 ft
(c) 1.56 ft 53. (a) 30°
(b) 60° (c) 75° (d) 86°
(e) 86° (f) 60°
54. (a) See the graph in part (d).
(b)

(d) The function gives an excellent
model for the data.

(e)

TI-83 Plus fixed to the
nearest hundredth.

80

20
1 25

f(x) = 25 sin[    (x – 4.2)] + 50�
6

f �x� � 25 sin� �

6
�x � 4.2�	 � 50

d

0

50

d = 50 cot �

�
�
4

�
2

9

h2

h1

d

�

40 8 12 16 20 24 28

1

2

3

4

x

y

Time (in hours)

T
id

es
 (

in
 f

ee
t) (2.4, 2.6)

(14.7, 2.6)

(27, 2.6)

(21, 1.4)(8.7, 1.4)

Month °F Month °F

Jan 25 July 74

Feb 28 Aug 75

Mar 36 Sept 66

Apr 48 Oct 55

May 61 Nov 39

June 72 Dec 28

Source: Miller, A., J. Thompson, and R.
Peterson, Elements of Meteorology, 4th
Edition, Charles E. Merrill Publishing
Co., 1983.
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1. 2. 3. .09

4. 135° 5. 6. 229.18°

7. (a) (b) 15,000 cm2

8. 2 radians 9. (a) radians

(b) cm (c) cm per sec
5�

9

10�

3

�

3

4

3

�210°

�
�

4

2�

3

55. (continued) Circular functions can be used to
model the fluctuating part of the pollution levels,
and exponential functions can be used to model
long-term growth. The pollution level in a certain
area might be given by

where x is the time in years, with representing
January 1 of the base year. July 1 of the same year would be represented by ,
October 1 of the following year would be represented by , and so on. Find
the pollution levels on each date.

(a) January 1, base year (b) July 1, base year
(c) January 1, following year (d) July 1, following year

An object in simple harmonic motion has position function s inches from an initial point,
where t is the time in seconds. Find the amplitude, period, and frequency.

56. 57.

58. In Exercise 56, what does the period represent? What does the amplitude represent?

59. In Exercise 57, what does the frequency represent? Find the position of the object
from the initial point at 1.5 sec, 2 sec, and 3.25 sec.

s�t� � 4 sin � ts�t� � 3 cos 2t

x � 1.75
x � .5

x � 0

y � 7�1 � cos 2�x� �x � 10� � 100e.2x,

55. (a) 100 (b) 258 (c) 122
(d) 296 56. amplitude: 3; 

period: ; frequency: 

57. amplitude: 4; period: 2; 

frequency: 58. The period is 

the time to complete one cycle.
The amplitude is the maximum
distance (on either side) from the
initial point. 59. The frequency
is the number of cycles in one unit
of time; ; 0; �2
2�4

1

2

1

�
�

600

0
0 6

Chapter 6 Test

Convert each degree measure to radians.

1. 120° 2. 3. 5° (to the nearest
hundredth)

Convert each radian measure to degrees.

4. 5. 6. 4 (to the nearest
hundredth)

7. A central angle of a circle with radius 150 cm cuts off an arc of 200 cm. Find each
measure.

(a) the radian measure of the angle
(b) the area of a sector with that central angle

8. Rotation of Gas Gauge Arrow The arrow on a car’s gasoline gauge is in. long.
See the figure. Through what angle does the arrow rotate when it moves 1 in. on the
gauge?

Empty Full

1
2

�
7�

6

3�

4

�45°
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9. Angular and Linear Speed of a Point Suppose that point P is on a circle with
radius 10 cm, and ray OP is rotating with angular speed radian per sec.

(a) Find the angle generated by P in 6 sec.
(b) Find the distance traveled by P along the circle in 6 sec.
(c) Find the linear speed of P.

Find each circular function value.

10. 11. 12. 13.

14. (a) Use a calculator to approximate s in the interval , if 

(b) Find the exact value of s in the interval , if 

15. Consider the function defined by .

(a) What is its period? (b) What is the amplitude of its graph?
(c) What is its range? (d) What is the y-intercept of its graph?
(e) What is its phase shift?

Graph each function over a two-period interval. Identify asymptotes when applicable.

16. 17.

18. 19.

20.

21. (Modeling) Average Monthly Temperature The average monthly temperature 
(in °F) in Austin, Texas, can be modeled using the circular function defined by

where x is the month and corresponds to January. (Source: Miller, A., J.
Thompson, and R. Peterson, Elements of Meteorology, 4th Edition, Charles E.
Merrill Publishing Co., 1983.)

(a) Graph f in the window by .
(b) Determine the amplitude, period, phase shift, and vertical translation of f.
(c) What is the average monthly temperature for the month of December?
(d) Determine the maximum and minimum average monthly temperatures and the

months when they occur.
(e) What would be an approximation for the average yearly temperature in Austin?

How is this related to the vertical translation of the sine function in the formula
for f ?

22. (Modeling) Spring The height of a weight attached to a spring is

inches after t seconds.

(a) Find the maximum height that the weight rises above the equilibrium position of

(b) When does the weight first reach its maximum height, if 
(c) What are the frequency and period?

t � 0?
y � 0.

s�t� � �4 cos 8�t

�45, 90��1, 25�

x � 1

f �x� � 17.5 sin� �

6
�x � 4�	 � 67.5,

y � �2 � cot�x �
�

2 �
y � �1 � 2 sin�x � ��y � tan�x �

�

2 �
y � �csc 2xy � �cos 2x

y � 3 � 6 sin�2x �
�
2 �

cos s � 1
2 .�0, �

2 �
sin s � .8258.�0, �

2 �

sec 
2�

3
tan 

3�

2
cos��

7�

6 �sin 
3�

4

�
18
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10. 11.

12. undefined 13.

14. (a) .9716 (b)

15. (a) (b) 6 (c)

(d) (e) to the left

16. 17.

18.

19.

20.

21. (a)

(b) 17.5; 12; 4 to the right; 67.5 up
(c) approximately 52°F
(d) 50°F in January; 85°F in July
(e) approximately 67.5°; This is the
vertical translation.

22. (a) 4 in. (b) after sec

(c) 4 cycles per sec; sec
1

4

1

8

90

45
1 25

f(x) = 17.5 sin[    (x – 4)] + 67.5�
6

x

y

–2
0

3�
2

�
2

�
2 �–

y = –2 – cot (x –    )�
2

y

x
–1
–2
–3

2
3

y = –1 + 2 sin (x + �)

0
–2� –� � 2�

y

x0

1

–1

x = �x = –�

–� �

y = tan (x –     )�
2

x

y

0
–1

1
2

–2

3�
2

�
2

� 2�

y = –csc 2x

y

x0
–1

–2

1

2
y = –cos 2x

�
2

�
2

�–� –

�that is, �
�

4 �
�

4
�3

��3, 9��

�

3

�2

�

3

2

2

2
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Chapter 6 Quantitative Reasoning

Does the fact that average monthly temperatures are periodic affect
your utility bills?
In an article entitled “I Found Sinusoids in My Gas Bill” (Mathematics Teacher,
January 2000), Cathy G. Schloemer presents the following graph that accompa-
nied her gas bill.

Notice that two sinusoids are suggested here: one for the behavior of the average
monthly temperature and another for gas use in MCF (thousands of cubic feet).

1. If January 1997 is represented by the data of estimated ordered pairs
(month, temperature) is given in the list shown on the two graphing calcula-
tor screens below.

Use the sine regression feature of a graphing calculator to find a sine function
that fits these data points. Then make a scatter diagram, and graph the function.

2. If January 1997 is again represented by the data of estimated ordered
pairs (month, gas use in MCF) is given in the list shown on the two graphing
calculator screens below.

Use the sine regression feature of a graphing calculator to find a sine function
that fits these data points. Then make a scatter diagram, and graph the function.

3. Answer the question posed at the beginning of this exercise, in the form of a
short paragraph.

x � 1,

x � 1,

1996 D J F M A M J J A S O N D J

2
4
6
8

10
12
14
16
18
20
22
24
26

25

1998

30
35
40
45
50
55
60
65
70
75
80
85

MCF

T
ho

us
an

ds
 o

f 
cu

bi
c 

fe
et

Your Energy Usage
Average
monthly
temp (°F)

1.

2.

30

–2
–.1 13

TI-83 Plus fixed to the
nearest hundredth

85

20
–.1 13

TI-83 Plus fixed to the
nearest hundredth

9
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